125 research outputs found

    On FPL configurations with four sets of nested arches

    Full text link
    The problem of counting the number of Fully Packed Loop (FPL) configurations with four sets of a,b,c,d nested arches is addressed. It is shown that it may be expressed as the problem of enumeration of tilings of a domain of the triangular lattice with a conic singularity. After reexpression in terms of non-intersecting lines, the Lindstr\"om-Gessel-Viennot theorem leads to a formula as a sum of determinants. This is made quite explicit when min(a,b,c,d)=1 or 2. We also find a compact determinant formula which generates the numbers of configurations with b=d.Comment: 22 pages, TeX, 16 figures; a new formula for a generating function adde

    Enumeration of Matchings: Problems and Progress

    Full text link
    This document is built around a list of thirty-two problems in enumeration of matchings, the first twenty of which were presented in a lecture at MSRI in the fall of 1996. I begin with a capsule history of the topic of enumeration of matchings. The twenty original problems, with commentary, comprise the bulk of the article. I give an account of the progress that has been made on these problems as of this writing, and include pointers to both the printed and on-line literature; roughly half of the original twenty problems were solved by participants in the MSRI Workshop on Combinatorics, their students, and others, between 1996 and 1999. The article concludes with a dozen new open problems. (Note: This article supersedes math.CO/9801060 and math.CO/9801061.)Comment: 1+37 pages; to appear in "New Perspectives in Geometric Combinatorics" (ed. by Billera, Bjorner, Green, Simeon, and Stanley), Mathematical Science Research Institute publication #37, Cambridge University Press, 199

    Exact solution of the 2d2d dimer model: Corner free energy, correlation functions and combinatorics

    Get PDF
    In this work, some classical results of the pfaffian theory of the dimer model based on the work of Kasteleyn, Fisher and Temperley are introduced in a fermionic framework. Then we shall detail the bosonic formulation of the model {\it via} the so-called height mapping and the nature of boundary conditions is unravelled. The complete and detailed fermionic solution of the dimer model on the square lattice with an arbitrary number of monomers is presented, and finite size effect analysis is performed to study surface and corner effects, leading to the extrapolation of the central charge of the model. The solution allows for exact calculations of monomer and dimer correlation functions in the discrete level and the scaling behavior can be inferred in order to find the set of scaling dimensions and compare to the bosonic theory which predict particular features concerning corner behaviors. Finally, some combinatorial and numerical properties of partition functions with boundary monomers are discussed, proved and checked with enumeration algorithms.Comment: Final version to be published in Nuclear Physics B (53 pages and a lot of figures

    Trees and Matchings

    Full text link
    In this article, Temperley's bijection between spanning trees of the square grid on the one hand, and perfect matchings (also known as dimer coverings) of the square grid on the other, is extended to the setting of general planar directed (and undirected) graphs, where edges carry nonnegative weights that induce a weighting on the set of spanning trees. We show that the weighted, directed spanning trees (often called arborescences) of any planar graph G can be put into a one-to-one weight-preserving correspondence with the perfect matchings of a related planar graph H. One special case of this result is a bijection between perfect matchings of the hexagonal honeycomb lattice and directed spanning trees of a triangular lattice. Another special case gives a correspondence between perfect matchings of the ``square-octagon'' lattice and directed weighted spanning trees on a directed weighted version of the cartesian lattice. In conjunction with results of Kenyon, our main theorem allows us to compute the measures of all cylinder events for random spanning trees on any (directed, weighted) planar graph. Conversely, in cases where the perfect matching model arises from a tree model, Wilson's algorithm allows us to quickly generate random samples of perfect matchings.Comment: 32 pages, 19 figures (minor revisions from version 1
    • …
    corecore