The problem of counting the number of Fully Packed Loop (FPL) configurations
with four sets of a,b,c,d nested arches is addressed. It is shown that it may
be expressed as the problem of enumeration of tilings of a domain of the
triangular lattice with a conic singularity. After reexpression in terms of
non-intersecting lines, the Lindstr\"om-Gessel-Viennot theorem leads to a
formula as a sum of determinants. This is made quite explicit when
min(a,b,c,d)=1 or 2. We also find a compact determinant formula which generates
the numbers of configurations with b=d.Comment: 22 pages, TeX, 16 figures; a new formula for a generating function
adde