2,929 research outputs found

    Perfect Roman Domination and Unique Response Roman Domination

    Full text link
    The idea of enumeration algorithms with polynomial delay is to polynomially bound the running time between any two subsequent solutions output by the enumeration algorithm. While it is open for more than four decades if all minimal dominating sets of a graph can be enumerated in output-polynomial time, it has recently been proven that pointwise-minimal Roman dominating functions can be enumerated even with polynomial delay. The idea of the enumeration algorithm was to use polynomial-time solvable extension problems. We use this as a motivation to prove that also two variants of Roman dominating functions studied in the literature, named perfect and unique response, can be enumerated with polynomial delay. This is interesting since Extension Perfect Roman Domination is W[1]-complete if parameterized by the weight of the given function and even W[2]-complete if parameterized by the number vertices assigned 0 in the pre-solution, as we prove. Otherwise, efficient solvability of extension problems and enumerability with polynomial delay tend to go hand-in-hand. We achieve our enumeration result by constructing a bijection to Roman dominating functions, where the corresponding extension problem is polynomimaltime solvable. Furthermore, we show that Unique Response Roman Domination is solvable in polynomial time on split graphs, while Perfect Roman Domination is NP-complete on this graph class, which proves that both variations, albeit coming with a very similar definition, do differ in some complexity aspects. This way, we also solve an open problem from the literature

    On the Enumeration of Minimal Dominating Sets and Related Notions

    Full text link
    A dominating set DD in a graph is a subset of its vertex set such that each vertex is either in DD or has a neighbour in DD. In this paper, we are interested in the enumeration of (inclusion-wise) minimal dominating sets in graphs, called the Dom-Enum problem. It is well known that this problem can be polynomially reduced to the Trans-Enum problem in hypergraphs, i.e., the problem of enumerating all minimal transversals in a hypergraph. Firstly we show that the Trans-Enum problem can be polynomially reduced to the Dom-Enum problem. As a consequence there exists an output-polynomial time algorithm for the Trans-Enum problem if and only if there exists one for the Dom-Enum problem. Secondly, we study the Dom-Enum problem in some graph classes. We give an output-polynomial time algorithm for the Dom-Enum problem in split graphs, and introduce the completion of a graph to obtain an output-polynomial time algorithm for the Dom-Enum problem in P6P_6-free chordal graphs, a proper superclass of split graphs. Finally, we investigate the complexity of the enumeration of (inclusion-wise) minimal connected dominating sets and minimal total dominating sets of graphs. We show that there exists an output-polynomial time algorithm for the Dom-Enum problem (or equivalently Trans-Enum problem) if and only if there exists one for the following enumeration problems: minimal total dominating sets, minimal total dominating sets in split graphs, minimal connected dominating sets in split graphs, minimal dominating sets in co-bipartite graphs.Comment: 15 pages, 3 figures, In revisio

    A Polynomial Delay Algorithm for Enumerating Minimal Dominating Sets in Chordal Graphs

    Full text link
    An output-polynomial algorithm for the listing of minimal dominating sets in graphs is a challenging open problem and is known to be equivalent to the well-known Transversal problem which asks for an output-polynomial algorithm for listing the set of minimal hitting sets in hypergraphs. We give a polynomial delay algorithm to list the set of minimal dominating sets in chordal graphs, an important and well-studied graph class where such an algorithm was open for a while.Comment: 13 pages, 1 figure, submitte

    Polynomial Delay Algorithm for Listing Minimal Edge Dominating sets in Graphs

    Full text link
    The Transversal problem, i.e, the enumeration of all the minimal transversals of a hypergraph in output-polynomial time, i.e, in time polynomial in its size and the cumulated size of all its minimal transversals, is a fifty years old open problem, and up to now there are few examples of hypergraph classes where the problem is solved. A minimal dominating set in a graph is a subset of its vertex set that has a non empty intersection with the closed neighborhood of every vertex. It is proved in [M. M. Kant\'e, V. Limouzy, A. Mary, L. Nourine, On the Enumeration of Minimal Dominating Sets and Related Notions, In Revision 2014] that the enumeration of minimal dominating sets in graphs and the enumeration of minimal transversals in hypergraphs are two equivalent problems. Hoping this equivalence can help to get new insights in the Transversal problem, it is natural to look inside graph classes. It is proved independently and with different techniques in [Golovach et al. - ICALP 2013] and [Kant\'e et al. - ISAAC 2012] that minimal edge dominating sets in graphs (i.e, minimal dominating sets in line graphs) can be enumerated in incremental output-polynomial time. We provide the first polynomial delay and polynomial space algorithm that lists all the minimal edge dominating sets in graphs, answering an open problem of [Golovach et al. - ICALP 2013]. Besides the result, we hope the used techniques that are a mix of a modification of the well-known Berge's algorithm and a strong use of the structure of line graphs, are of great interest and could be used to get new output-polynomial time algorithms.Comment: proofs simplified from previous version, 12 pages, 2 figure

    Roman Census: Enumerating and Counting Roman Dominating Functions on Graph Classes

    Get PDF

    Minimal dominating sets enumeration with FPT-delay parameterized by the degeneracy and maximum degree

    Full text link
    At STOC 2002, Eiter, Gottlob, and Makino presented a technique called ordered generation that yields an nO(d)n^{O(d)}-delay algorithm listing all minimal transversals of an nn-vertex hypergraph of degeneracy dd. Recently at IWOCA 2019, Conte, Kant\'e, Marino, and Uno asked whether this XP-delay algorithm parameterized by dd could be made FPT-delay parameterized by dd and the maximum degree Δ\Delta, i.e., an algorithm with delay f(d,Δ)⋅nO(1)f(d,\Delta)\cdot n^{O(1)} for some computable function ff. Moreover, as a first step toward answering that question, they note that the same delay is open for the intimately related problem of listing all minimal dominating sets in graphs. In this paper, we answer the latter question in the affirmative.Comment: 18 pages, 2 figure
    • …
    corecore