29 research outputs found

    On the Number of Circuit-cocircuit Reversal Classes of an Oriented Matroid

    Get PDF
    The first author introduced the circuit-cocircuit reversal system of an oriented matroid, and showed that when the underlying matroid is regular, the cardinalities of such system and its variations are equal to special evaluations of the Tutte polynomial (e.g., the total number of circuit-cocircuit reversal classes equals t(M;1,1)t(M;1,1), the number of bases of the matroid). By relating these classes to activity classes studied by the first author and Las Vergnas, we give an alternative proof of the above results and a proof of the converse statements that these equalities fail whenever the underlying matroid is not regular. Hence we extend the above results to an equivalence of matroidal properties, thereby giving a new characterization of regular matroids.Comment: 7 pages. v2: simplified proof, with new statements concerning other special evaluations of the Tutte polynomia

    Equivalences on Acyclic Orientations

    Get PDF
    The cyclic and dihedral groups can be made to act on the set Acyc(Y) of acyclic orientations of an undirected graph Y, and this gives rise to the equivalence relations ~kappa and ~delta, respectively. These two actions and their corresponding equivalence classes are closely related to combinatorial problems arising in the context of Coxeter groups, sequential dynamical systems, the chip-firing game, and representations of quivers. In this paper we construct the graphs C(Y) and D(Y) with vertex sets Acyc(Y) and whose connected components encode the equivalence classes. The number of connected components of these graphs are denoted kappa(Y) and delta(Y), respectively. We characterize the structure of C(Y) and D(Y), show how delta(Y) can be derived from kappa(Y), and give enumeration results for kappa(Y). Moreover, we show how to associate a poset structure to each kappa-equivalence class, and we characterize these posets. This allows us to create a bijection from Acyc(Y)/~kappa to the union of Acyc(Y')/~kappa and Acyc(Y'')/~kappa, Y' and Y'' denote edge deletion and edge contraction for a cycle-edge in Y, respectively, which in turn shows that kappa(Y) may be obtained by an evaluation of the Tutte polynomial at (1,0).Comment: The original paper was extended, reorganized, and split into two papers (see also arXiv:0802.4412

    On Enumeration of Conjugacy Classes of Coxeter Elements

    Get PDF
    In this paper we study the equivalence relation on the set of acyclic orientations of a graph Y that arises through source-to-sink conversions. This source-to-sink conversion encodes, e.g. conjugation of Coxeter elements of a Coxeter group. We give a direct proof of a recursion for the number of equivalence classes of this relation for an arbitrary graph Y using edge deletion and edge contraction of non-bridge edges. We conclude by showing how this result may also be obtained through an evaluation of the Tutte polynomial as T(Y,1,0), and we provide bijections to two other classes of acyclic orientations that are known to be counted in the same way. A transversal of the set of equivalence classes is given.Comment: Added a few results about connections to the Tutte polynomia

    Cycle Equivalence of Graph Dynamical Systems

    Get PDF
    Graph dynamical systems (GDSs) can be used to describe a wide range of distributed, nonlinear phenomena. In this paper we characterize cycle equivalence of a class of finite GDSs called sequential dynamical systems SDSs. In general, two finite GDSs are cycle equivalent if their periodic orbits are isomorphic as directed graphs. Sequential dynamical systems may be thought of as generalized cellular automata, and use an update order to construct the dynamical system map. The main result of this paper is a characterization of cycle equivalence in terms of shifts and reflections of the SDS update order. We construct two graphs C(Y) and D(Y) whose components describe update orders that give rise to cycle equivalent SDSs. The number of components in C(Y) and D(Y) is an upper bound for the number of cycle equivalence classes one can obtain, and we enumerate these quantities through a recursion relation for several graph classes. The components of these graphs encode dynamical neutrality, the component sizes represent periodic orbit structural stability, and the number of components can be viewed as a system complexity measure

    A framework unifying some bijections for graphs and its connection to Lawrence polytopes

    Full text link
    Let GG be a connected graph. The Jacobian group (also known as the Picard group or sandpile group) of GG is a finite abelian group whose cardinality equals the number of spanning trees of GG. The Jacobian group admits a canonical simply transitive action on the set G(G)\mathcal{G}(G) of cycle-cocycle reversal classes of orientations of GG. Hence one can construct combinatorial bijections between spanning trees of GG and G(G)\mathcal{G}(G) to build connections between spanning trees and the Jacobian group. The BBY bijections and the Bernardi bijections are two important examples. In this paper, we construct a new family of such bijections that include both. Our bijections depend on a pair of atlases (different from the ones in manifold theory) that abstract and generalize certain common features of the two known bijections. The definition of these atlases is derived from triangulations and dissections of the Lawrence polytopes associated to GG. The acyclic cycle signatures and cocycle signatures used to define the BBY bijections correspond to regular triangulations. Our bijections can extend to subgraph-orientation correspondences. Most of our results hold for regular matroids. We present our work in the language of fourientations, which are a generalization of orientations

    Fourientation activities and the Tutte polynomial

    Get PDF
    International audienceA fourientation of a graph G is a choice for each edge of the graph whether to orient that edge in either direction, leave it unoriented, or biorient it. We may naturally view fourientations as a mixture of subgraphs and graph orientations where unoriented and bioriented edges play the role of absent and present subgraph edges, respectively. Building on work of Backman and Hopkins (2015), we show that given a linear order and a reference orientation of the edge set, one can define activities for fourientations of G which allow for a new 12 variable expansion of the Tutte polynomial TG. Our formula specializes to both an orientation activities expansion of TG due to Las Vergnas (1984) and a generalized activities expansion of TG due to Gordon and Traldi (1990)
    corecore