14 research outputs found

    Entropy power inequalities for qudits

    Get PDF
    Shannon's entropy power inequality (EPI) can be viewed as a statement of concavity of an entropic function of a continuous random variable under a scaled addition rule: f (√a X + √1 - aY) ≥ af(X)+(1 - a)f(Y) ∀a ∈ [0,1]. Here, X and Y are continuous random variables and the function f is either the differential entropy or the entropy power. König and Smith [IEEE Trans. Inf. Theory 60(3), 1536-1548 (2014)] and De Palma, Mari, and Giovannetti [Nat. Photonics 8(12), 958-964 (2014)] obtained quantum analogues of these inequalities for continuous-variable quantum systems, where X and Y are replaced by bosonic fields and the addition rule is the action of a beam splitter with transmissivity a on those fields. In this paper, we similarly establish a class of EPI analogues for d-level quantum systems (i.e., qudits). The underlying addition rule for which these inequalities hold is given by a quantum channel that depends on the parameter a ∈ [0,1] and acts like a finite-dimensional analogue of a beam splitter with transmissivity a, converting a two-qudit product state into a single qudit state. We refer to this channel as a partial swap channel because of the particular way its output interpolates between the states of the two qudits in the input as a is changed from zero to one. We obtain analogues of Shannon's EPI, not only for the von Neumann entropy and the entropy power for the output of such channels, but also for a much larger class of functions. This class includes the Rényi entropies and the subentropy. We also prove a qudit analogue of the entropy photon number inequality (EPnI). Finally, for the subclass of partial swap channels for which one of the qudit states in the input is fixed, our EPIs and EPnI yield lower bounds on the minimum output entropy and upper bounds on the Holevo capacity.KA acknowledges support by an Odysseus Grant of the Flemish FWO. MO acknowledges financial support from European Union under project QALGO (Grant Agreement No. 600700) and by a Leverhulme Trust Early Career Fellowhip (ECF-2015-256)

    The Entropy Power Inequality with quantum conditioning

    Get PDF
    The conditional entropy power inequality is a fundamental inequality in information theory, stating that the conditional entropy of the sum of two conditionally independent vector-valued random variables each with an assigned conditional entropy is minimum when the random variables are Gaussian. We prove the conditional entropy power inequality in the scenario where the conditioning system is quantum. The proof is based on the heat semigroup and on a generalization of the Stam inequality in the presence of quantum conditioning. The entropy power inequality with quantum conditioning will be a key tool of quantum information, with applications in distributed source coding protocols with the assistance of quantum entanglement

    Geometric inequalities from phase space translations

    Get PDF
    We establish a quantum version of the classical isoperimetric inequality relating the Fisher information and the entropy power of a quantum state. The key tool is a Fisher information inequality for a state which results from a certain convolution operation: the latter maps a classical probability distribution on phase space and a quantum state to a quantum state. We show that this inequality also gives rise to several related inequalities whose counterparts are well-known in the classical setting: in particular, it implies an entropy power inequality for the mentioned convolution operation as well as the isoperimetric inequality, and establishes concavity of the entropy power along trajectories of the quantum heat diffusion semigroup. As an application, we derive a Log-Sobolev inequality for the quantum Ornstein-Uhlenbeck semigroup, and argue that it implies fast convergence towards the fixed point for a large class of initial states.Comment: 37 pages; updated to match published versio

    Hamiltonian simulation with optimal sample complexity

    Get PDF
    © 2017 Author(s). We investigate the sample complexity of Hamiltonian simulation: how many copies of an unknown quantum state are required to simulate a Hamiltonian encoded by the density matrix of that state? We show that the procedure proposed by Lloyd, Mohseni, and Rebentrost [Nat. Phys., 10(9):631-633, 2014] is optimal for this task. We further extend their method to the case of multiple input states, showing how to simulate any Hermitian polynomial of the states provided. As applications, we derive optimal algorithms for commutator simulation and orthogonality testing, and we give a protocol for creating a coherent superposition of pure states, when given sample access to those states. We also show that this sample-based Hamiltonian simulation can be used as the basis of a universal model of quantum computation that requires only partial swap operations and simple single-qubit states.S.K. and C.Y.L. are funded by the Department of Defense. G.H.L. is funded by the NSF CCR and the ARO quantum computing projects. M.O. acknowledges Leverhulme Trust Early Career Fellowship (ECF-2015-256) and European Union project QALGO (Grant Agreement No. 600700) for financial support. T.J.Y. thanks the DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a. The authors are grateful to the University of Maryland Libraries’ Open Access Publishing Fund and the Massachusetts Institute of Technology Open Access Publishing Fund for partial funding for open access

    Quantum Entropy and Central Limit Theorem

    Full text link
    We introduce a framework to study discrete-variable (DV) quantum systems based on qudits. It relies on notions of a mean state (MS), a minimal stabilizer-projection state (MSPS), and a new convolution. Some interesting consequences are: The MS is the closest MSPS to a given state with respect to the relative entropy; the MS is extremal with respect to the von Neumann entropy, demonstrating a ''maximal entropy principle in DV systems.'' We obtain a series of inequalities for quantum entropies and for Fisher information based on convolution, giving a ''second law of thermodynamics for quantum convolutions.'' We show that the convolution of two stabilizer states is a stabilizer state. We establish a central limit theorem, based on iterating the convolution of a zero-mean quantum state, and show this converges to its MS. The rate of convergence is characterized by the ''magic gap,'' which we define in terms of the support of the characteristic function of the state. We elaborate on two examples: the DV beam splitter and the DV amplifier.Comment: 11 pages. See also the companion work arXiv:2302.0842

    Bounds on Information Combining With Quantum Side Information

    Full text link
    "Bounds on information combining" are entropic inequalities that determine how the information (entropy) of a set of random variables can change when these are combined in certain prescribed ways. Such bounds play an important role in classical information theory, particularly in coding and Shannon theory; entropy power inequalities are special instances of them. The arguably most elementary kind of information combining is the addition of two binary random variables (a CNOT gate), and the resulting quantities play an important role in Belief propagation and Polar coding. We investigate this problem in the setting where quantum side information is available, which has been recognized as a hard setting for entropy power inequalities. Our main technical result is a non-trivial, and close to optimal, lower bound on the combined entropy, which can be seen as an almost optimal "quantum Mrs. Gerber's Lemma". Our proof uses three main ingredients: (1) a new bound on the concavity of von Neumann entropy, which is tight in the regime of low pairwise state fidelities; (2) the quantitative improvement of strong subadditivity due to Fawzi-Renner, in which we manage to handle the minimization over recovery maps; (3) recent duality results on classical-quantum-channels due to Renes et al. We furthermore present conjectures on the optimal lower and upper bounds under quantum side information, supported by interesting analytical observations and strong numerical evidence. We finally apply our bounds to Polar coding for binary-input classical-quantum channels, and show the following three results: (A) Even non-stationary channels polarize under the polar transform. (B) The blocklength required to approach the symmetric capacity scales at most sub-exponentially in the gap to capacity. (C) Under the aforementioned lower bound conjecture, a blocklength polynomial in the gap suffices.Comment: 23 pages, 6 figures; v2: small correction

    Gaussian optimizers for entropic inequalities in quantum information

    Get PDF
    We survey the state of the art for the proof of the quantum Gaussian optimizer conjectures of quantum information theory. These fundamental conjectures state that quantum Gaussian input states are the solution to several optimization problems involving quantum Gaussian channels. These problems are the quantum counterpart of three fundamental results of functional analysis and probability: the Entropy Power Inequality, the sharp Young's inequality for convolutions, and the theorem "Gaussian kernels have only Gaussian maximizers." Quantum Gaussian channels play a key role in quantum communication theory: they are the quantum counterpart of Gaussian integral kernels and provide the mathematical model for the propagation of electromagnetic waves in the quantum regime. The quantum Gaussian optimizer conjectures are needed to determine the maximum communication rates over optical fibers and free space. The restriction of the quantum-limited Gaussian attenuator to input states diagonal in the Fock basis coincides with the thinning, which is the analog of the rescaling for positive integer random variables. Quantum Gaussian channels provide then a bridge between functional analysis and discrete probability
    corecore