316 research outputs found

    Large Eddy Simulation-Based Analysis of Entropy Generation in a Turbulent Nonpremixed Flame

    Get PDF
    LES (large eddy simulation) is employed for prediction and analysis of entropy generation in turbulent combustion. The entropy transport equation is considered in LES. This equation contains several unclosed entropy generation terms corresponding to irreversible processes: heat conduction, mass diffusion, chemical reaction and viscous dissipation. The SGS (subgrid scale) closure of these effects is provided by a methodology termed the En-FDF (entropy filtered density function), which contains complete statistical information about SGS variation of scalars and entropy. In the En-FDF, the effects of chemical reaction and its associated entropy generation appear in closed forms. The methodology is applied for LES of a nonpremixed jet flame. Predictions show good agreements with the experimental data. Analysis of entropy generation shows that heat conduction and chemical reaction are the main sources of irreversibility in this flame. The sensitivity of individual entropy generation effects to turbulence intensity is studied

    Entropy Generation Analysis in Turbulent Reacting Flows and Near Wall: A Review

    Get PDF
    This paper provides a review of different contributions dedicated thus far to entropy generation analysis (EGA) in turbulent combustion systems. We account for various parametric studies that include wall boundedness, flow operating conditions, combustion regimes, fuels/alternative fuels and application geometries. Special attention is paid to experimental and numerical modeling works along with selected applications. First, the difficulties of performing comprehensive experiments that may support the understanding of entropy generation phenomena are outlined. Together with practical applications, the lumped approach to calculate the total entropy generation rate is presented. Apart from direct numerical simulation, numerical modeling approaches are described within the continuum formulation in the framework of non-equilibrium thermodynamics. Considering the entropy transport equations in both Reynolds-averaged Navier–Stokes and large eddy simulation modeling, different modeling degrees of the entropy production terms are presented and discussed. Finally, exemplary investigations and validation cases going from generic or/and canonical configurations to practical configurations, such as internal combustion engines, gas turbines and power plants, are reported. Thereby, the areas for future research in the development of EGA for enabling efficient combustion systems are highlighted. Since EGA is known as a promising tool for optimization of combustion systems, this aspect is highlighted in this work

    Influence of cavity flow on turbine aerodynamics

    Get PDF
    In order to deal with high temperatures faced by the components downstream of the combustion chamber, some relatively cold air is bled at the compressor. This air feeds the cavities under the turbine main annulus and cool down the rotor disks ensuring a proper and safe operation of the turbine. This thesis manuscript introduces a numerical study of the effect of the cavity flow close to the turbine hub on its aerodynamic performance. The interaction phenomena between the cavity and main annulus flow are not currently fully understood. The study of these phenomena is performed based on different numerical approaches (RANS, LES and LES-LBM) applied to two configurations for which experimental results are available. A linear cascade configuration with an upstream cavity and various rim seal geometries (interface between rotor and stator platform) and cavity flow rate available. A rotating configuration that is a two stage turbine including cavities close to realistic industrial configurations. Additional losses incurred by the cavity flow are measured and studied using a method based on exergy (energy balance in the purpose to generate work)

    Computation of Entropy Production in Stratified Flames Based on Chemistry Tabulation and an Eulerian Transported Probability Density Function Approach

    Get PDF
    This contribution presents a straightforward strategy to investigate the entropy production in stratified premixed flames. The modeling approach is grounded on a chemistry tabulation strategy, large eddy simulation, and the Eulerian stochastic field method. This enables a combination of a detailed representation of the chemistry with an advanced model for the turbulence chemistry interaction, which is crucial to compute the various sources of exergy losses in combustion systems. First, using detailed reaction kinetic reference simulations in a simplified laminar stratified premixed flame, it is demonstrated that the tabulated chemistry is a suitable approach to compute the various sources of irreversibilities. Thereafter, the effects of the operating conditions on the entropy production are investigated. For this purpose, two operating conditions of the Darmstadt stratified burner with varying levels of shear have been considered. The investigations reveal that the contribution to the entropy production through mixing emerging from the chemical reaction is much larger than the one caused by the stratification. Moreover, it is shown that a stronger shear, realized through a larger Reynolds number, yields higher entropy production through heat, mixing and viscous dissipation and reduces the share by chemical reaction to the total entropy generated

    Computation of Entropy Production in Stratified Flames Based on Chemistry Tabulation and an Eulerian Transported Probability Density Function Approach

    Get PDF
    This contribution presents a straightforward strategy to investigate the entropy production in stratified premixed flames. The modeling approach is grounded on a chemistry tabulation strategy, large eddy simulation, and the Eulerian stochastic field method. This enables a combination of a detailed representation of the chemistry with an advanced model for the turbulence chemistry interaction, which is crucial to compute the various sources of exergy losses in combustion systems. First, using detailed reaction kinetic reference simulations in a simplified laminar stratified premixed flame, it is demonstrated that the tabulated chemistry is a suitable approach to compute the various sources of irreversibilities. Thereafter, the effects of the operating conditions on the entropy production are investigated. For this purpose, two operating conditions of the Darmstadt stratified burner with varying levels of shear have been considered. The investigations reveal that the contribution to the entropy production through mixing emerging from the chemical reaction is much larger than the one caused by the stratification. Moreover, it is shown that a stronger shear, realized through a larger Reynolds number, yields higher entropy production through heat, mixing and viscous dissipation and reduces the share by chemical reaction to the total entropy generated

    Analysis of Local Exergy Losses in Combustion Systems Using a Hybrid Filtered Eulerian Stochastic Field Coupled with Detailed Chemistry Tabulation: Cases of Flames D and E

    Get PDF
    A second law analysis in combustion systems is performed along with an exergy loss study by quantifying the entropy generation sources using, for the first time, three different approaches: a classical-thermodynamics-based approach, a novel turbulence-based method and a look-up-table-based approach, respectively. The numerical computation is based on a hybrid filtered Eulerian stochastic field (ESF) method coupled with tabulated detailed chemistry according to a Famelet-Generated Manifold (FGM)-based combustion model. In this work, the capability of the three approaches to capture the effect of the Re number on local exergy losses is especially appraised. For this purpose, Sandia flames D and E are selected as application cases. First, the validation of the computed flow and scalar fields is achieved by comparison to available experimental data. For both flames, the flow field results for eight stochastic fields and the associated scalar fields show an excellent agreement. The ESF method reproduces all major features of the flames at a lower numerical cost. Next, the second law analysis carried out with the different approaches for the entropy generation computation provides comparable quantitative results. Using flame D as a reference, for which some results with the thermodynamic-based approach exist in the literature, it turns out that, among the sources of exergy loss, the heat transfer and the chemical reaction emerge notably as the main culprits for entropy production, causing 50% and 35% of it, respectively. This fact-finding increases in Sandia flame E, which features a high Re number compared to Sandia flame D. The computational cost is less once the entropy generation analysis is carried out by using the Large Eddy Simulation (LES) hybrid ESF/FGM approach together with the look-up-table-based or turbulence-based approach

    The Exergy Losses Analysis in Adiabatic Combustion Systems including the Exhaust Gas Exergy

    Get PDF
    The entropy generation analysis of adiabatic combustion systems was performed to quantify the exergy losses which are mainly the exergy destroyed during combustion inside the chamber and in the exhaust gases. The purpose of the present work was therefore: (a) to extend the exergy destruction analysis by including the exhaust gas exergy while applying the hybrid filtered Eulerian stochastic field (ESF) method coupled with the FGM chemistry tabulation strategy; (b) to introduce a novel method for evaluating the exergy content of exhaust gases; and (c) to highlight a link between exhaust gas exergy and combustion emissions. In this work, the adiabatic Sandia flames E and F were chosen as application combustion systems. First, the numerical results of the flow and scalar fields were validated by comparison with the experimental data. The under-utilization of eight stochastic fields (SFs), the flow field results and the associated scalar fields for the flame E show excellent agreement contrary to flame F. Then, the different exergy losses were calculated and analyzed. The heat transfer and chemical reaction are the main factors responsible for the exergy destruction during combustion. The chemical exergy of the exhaust gases shows a strong relation between the exergy losses and combustion emission as well as the gas exhaust temperature

    Heat Transfer in Energy Conversion Systems

    Get PDF
    In recent years, the scientific community’s interest towards efficient energy conversion systems has significantly increased. One of the reasons is certainly related to the change in the temperature of the planet, which appears to have increased by 0.76 °C with respect to pre-industrial levels, according to the Intergovernmental Panel on Climate Change (IPCC), and this trend has not yet been stopped. The European Union considers it vital to prevent global warming from exceeding 2 °C with respect to pre-industrial levels, since this phenomenon has been proven to result in irreversible and potentially catastrophic changes. These climate changes are mainly caused by the emissions of greenhouse gasses related to human activities, and can be drastically reduced by employing energy systems, for both heating and cooling of buildings and for power production, characterized by high efficiency levels and/or based on renewable energy sources. This Special Issue, published in the journal Energies, includes 12 contributions from across the world, including a wide range of applications, such as HT-PEMFC, district heating systems, a thermoelectric generator for industrial waste, artificial ground freezing, nanofluids, and others

    Estimation of Entropy Generation in a SCR-DeNOx System with AdBlue Spray Dynamic Using Large Eddy Simulation

    Get PDF
    In this work, the entropy generation analysis is extended to the multi-phase fluid flow within a Large Eddy Simulation (LES) framework. The selected study case consists of a generic selective catalytic reduction (SCR) configuration in which the water/AdBlue is injected into a cross-flow of the internal combustion (IC) engine exhaust gas. The adopted numerical modules are first assessed by comparing with experimental data for film thickness in the case of AdBlue injection and then with H₂O mass fraction and temperature for water injection case. Subsequently, the impact of heat transfer, fluid flow, phase change, mixing and chemical reaction due to AdBlue injection on the entropy generation is assessed. Hence, the individual contributions of viscous and heat dissipation together with the species mixing, chemical reaction during the thermal decomposition of urea into NH₃ and dispersed phase are especially evaluated and analysed. In comparison to the shares of the viscous and mixing processes, the entropy generation is predominated by the heat, chemical and dispersed phase contributions. The influence of the operating parameters such as exhaust gas temperature, flow rate and AdBlue injection on entropy generation is discussed in details. Using a suitable measures, the irreversibility map and some necessary inferences are also provided

    Development of Novel Passive Control Techniques for More Uniform Temperature at Combustor Exit and Hybrid Les/Rans Modeling

    Get PDF
    Gas turbines have become an important, widespread, and reliable device in the field of power generation. For any gas turbine system, the combustor is an integral part responsible for the combustion of the fuel. A number of studies have shown that the flow field exiting a combustor is highly non-uniform in pressure, velocity and, most importantly, temperature. Hot streaks amongst other non-uniformities cause varying thermal stresses on turbine blades and put pressure on the blade materials. In particular, these non-uniformities can have detrimental effects on the performance of the engine and cause a reduction in the expected life of critical components such as the turbine vanes. Due to the importance and severity of the problem, a large portion of the total combustor development effort is devoted to achieving better temperature uniformity. The present work is another attempt to develop novel passive control techniques to enhance mixing in a facility simulating the dilution zone of a typical gas turbine combustor and produce more uniform temperature at the combustor exit. Extensive experimentation was conducted to compare the proposed dilution techniques - staggered dilution holes, staggered dilution holes with streamlined body and staggered dilution holes with guide vanes at various orientations (0°, 30°, 60° and 90°). A weighted parameter was defined called `uniformity factor (\u27χ^\u27 ) to compare how close the mixture fraction is to the equilibrium value. For the majority of the flow conditions tested, the 30° guide vanes gave the most uniform temperature flow with just about 2% higher pressure loss as compared to the staggered dilution holes geometry. The fact that the use of 30° guide vanes can provide the turbine blade with 15% more uniform temperature flow than the staggered dilution holes design with merely 2% more pressure drop, has a very important implementation in order to reduce the damage of the turbine blades due to non-uniform temperature flow and extend its life-span. This would result in an overall reduction in the maintenance cost of the gas turbine systems which is quite significant. Furthermore, it was found that the introduction of the streamlined body not only improved the mixing in some cases but also helped decrease the pressure drop from inlet to exit of the experimental set-up. This is expected to increase the overall system efficiency and decrease the operating cost of a gas turbine system. Additionally, numerical modeling was used for various parametric studies to explore the effect of jet-to-mainstream momentum flux ratio on the exit temperature uniformity, variation of the cooling rate within the dilution zone, exergy analysis, etc. The other significant part of this work comprised of development of an Algebraic Stress Model (ASM) in order to estimate the turbulence via Reynolds stresses prediction. The ASM model developed is validated for a simple two-dimensional turbulent flow over a flat plate and a complex three dimensional flow around Ahmed body. The developed model is capable of predicting Reynolds stresses for a variety of flow regimes. Based on these validation it can be concluded that adopting a hybrid approach which combines the advantages of the ASM model with other turbulence models can be sought after for a more in-depth analysis of the flow structures and turbulent quantities both near-wall and away from the boundary for any fluid flow problem. The accurate prediction of the turbulent quantities plays a significant role in not just the fluid motion/transfer phenomenon rather it governs the heat exchange process as well especially in regions close to the wall
    • …
    corecore