55 research outputs found

    Perceptually optimised sign language video coding

    Get PDF

    Fast and Efficient Foveated Video Compression Schemes for H.264/AVC Platform

    Get PDF
    Some fast and efficient foveated video compression schemes for H.264/AVC platform are presented in this dissertation. The exponential growth in networking technologies and widespread use of video content based multimedia information over internet for mass communication applications like social networking, e-commerce and education have promoted the development of video coding to a great extent. Recently, foveated imaging based image or video compression schemes are in high demand, as they not only match with the perception of human visual system (HVS), but also yield higher compression ratio. The important or salient regions are compressed with higher visual quality while the non-salient regions are compressed with higher compression ratio. From amongst the foveated video compression developments during the last few years, it is observed that saliency detection based foveated schemes are the keen areas of intense research. Keeping this in mind, we propose two multi-scale saliency detection schemes. (1) Multi-scale phase spectrum based saliency detection (FTPBSD); (2) Sign-DCT multi-scale pseudo-phase spectrum based saliency detection (SDCTPBSD). In FTPBSD scheme, a saliency map is determined using phase spectrum of a given image/video with unity magnitude spectrum. On the other hand, the proposed SDCTPBSD method uses sign information of discrete cosine transform (DCT) also known as sign-DCT (SDCT). It resembles the response of receptive field neurons of HVS. A bottom-up spatio-temporal saliency map is obtained by linear weighted sum of spatial saliency map and temporal saliency map. Based on these saliency detection techniques, foveated video compression (FVC) schemes (FVC-FTPBSD and FVC-SDCTPBSD) are developed to improve the compression performance further.Moreover, the 2D-discrete cosine transform (2D-DCT) is widely used in various video coding standards for block based transformation of spatial data. However, for directional featured blocks, 2D-DCT offers sub-optimal performance and may not able to efficiently represent video data with fewer coefficients that deteriorates compression ratio. Various directional transform schemes are proposed in literature for efficiently encoding such directional featured blocks. However, it is observed that these directional transform schemes suffer from many issues like ‘mean weighting defect’, use of a large number of DCTs and a number of scanning patterns. We propose a directional transform scheme based on direction-adaptive fixed length discrete cosine transform (DAFL-DCT) for intra-, and inter-frame to achieve higher coding efficiency in case of directional featured blocks.Furthermore, the proposed DAFL-DCT has the following two encoding modes. (1) Direction-adaptive fixed length ― high efficiency (DAFL-HE) mode for higher compression performance; (2) Direction-adaptive fixed length ― low complexity (DAFL-LC) mode for low complexity with a fair compression ratio. On the other hand, motion estimation (ME) exploits temporal correlation between video frames and yields significant improvement in compression ratio while sustaining high visual quality in video coding. Block-matching motion estimation (BMME) is the most popular approach due to its simplicity and efficiency. However, the real-world video sequences may contain slow, medium and/or fast motion activities. Further, a single search pattern does not prove efficient in finding best matched block for all motion types. In addition, it is observed that most of the BMME schemes are based on uni-modal error surface. Nevertheless, real-world video sequences may exhibit a large number of local minima available within a search window and thus possess multi-modal error surface (MES). Hence, the following two uni-modal error surface based and multi-modal error surface based motion estimation schemes are developed. (1) Direction-adaptive motion estimation (DAME) scheme; (2) Pattern-based modified particle swarm optimization motion estimation (PMPSO-ME) scheme. Subsequently, various fast and efficient foveated video compression schemes are developed with combination of these schemes to improve the video coding performance further while maintaining high visual quality to salient regions. All schemes are incorporated into the H.264/AVC video coding platform. Various experiments have been carried out on H.264/AVC joint model reference software (version JM 18.6). Computing various benchmark metrics, the proposed schemes are compared with other existing competitive schemes in terms of rate-distortion curves, Bjontegaard metrics (BD-PSNR, BD-SSIM and BD-bitrate), encoding time, number of search points and subjective evaluation to derive an overall conclusion

    Content-prioritised video coding for British Sign Language communication.

    Get PDF
    Video communication of British Sign Language (BSL) is important for remote interpersonal communication and for the equal provision of services for deaf people. However, the use of video telephony and video conferencing applications for BSL communication is limited by inadequate video quality. BSL is a highly structured, linguistically complete, natural language system that expresses vocabulary and grammar visually and spatially using a complex combination of facial expressions (such as eyebrow movements, eye blinks and mouth/lip shapes), hand gestures, body movements and finger-spelling that change in space and time. Accurate natural BSL communication places specific demands on visual media applications which must compress video image data for efficient transmission. Current video compression schemes apply methods to reduce statistical redundancy and perceptual irrelevance in video image data based on a general model of Human Visual System (HVS) sensitivities. This thesis presents novel video image coding methods developed to achieve the conflicting requirements for high image quality and efficient coding. Novel methods of prioritising visually important video image content for optimised video coding are developed to exploit the HVS spatial and temporal response mechanisms of BSL users (determined by Eye Movement Tracking) and the characteristics of BSL video image content. The methods implement an accurate model of HVS foveation, applied in the spatial and temporal domains, at the pre-processing stage of a current standard-based system (H.264). Comparison of the performance of the developed and standard coding systems, using methods of video quality evaluation developed for this thesis, demonstrates improved perceived quality at low bit rates. BSL users, broadcasters and service providers benefit from the perception of high quality video over a range of available transmission bandwidths. The research community benefits from a new approach to video coding optimisation and better understanding of the communication needs of deaf people

    VIDEO PREPROCESSING BASED ON HUMAN PERCEPTION FOR TELESURGERY

    Get PDF
    Video transmission plays a critical role in robotic telesurgery because of the high bandwidth and high quality requirement. The goal of this dissertation is to find a preprocessing method based on human visual perception for telesurgical video, so that when preprocessed image sequences are passed to the video encoder, the bandwidth can be reallocated from non-essential surrounding regions to the region of interest, ensuring excellent image quality of critical regions (e.g. surgical region). It can also be considered as a quality control scheme that will gracefully degrade the video quality in the presence of network congestion. The proposed preprocessing method can be separated into two major parts. First, we propose a time-varying attention map whose value is highest at the gazing point and falls off progressively towards the periphery. Second, we propose adaptive spatial filtering and the parameters of which are adjusted according to the attention map. By adding visual adaptation to the spatial filtering, telesurgical video data can be compressed efficiently because of the high degree of visual redundancy removal by our algorithm. Our experimental results have shown that with the proposed preprocessing method, over half of the bandwidth can be reduced while there is no significant visual effect for the observer. We have also developed an optimal parameter selecting algorithm, so that when the network bandwidth is limited, the overall visual distortion after preprocessing is minimized

    Visually lossless coding in HEVC : a high bit depth and 4:4:4 capable JND-based perceptual quantisation technique for HEVC

    Get PDF
    Due to the increasing prevalence of high bit depth and YCbCr 4:4:4 video data, it is desirable to develop a JND-based visually lossless coding technique which can account for high bit depth 4:4:4 data in addition to standard 8-bit precision chroma subsampled data. In this paper, we propose a Coding Block (CB)-level JND-based luma and chroma perceptual quantisation technique for HEVC named Pixel-PAQ. Pixel-PAQ exploits both luminance masking and chrominance masking to achieve JND-based visually lossless coding; the proposed method is compatible with high bit depth YCbCr 4:4:4 video data of any resolution. When applied to YCbCr 4:4:4 high bit depth video data, Pixel-PAQ can achieve vast bitrate reductions – of up to 75% (68.6% over four QP data points) – compared with a state-of-the-art luma-based JND method for HEVC named IDSQ. Moreover, the participants in the subjective evaluations confirm that visually lossless coding is successfully achieved by Pixel-PAQ (at a PSNR value of 28.04 dB in one test)

    IQNet: Image Quality Assessment Guided Just Noticeable Difference Prefiltering For Versatile Video Coding

    Full text link
    Image prefiltering with just noticeable distortion (JND) improves coding efficiency in a visual lossless way by filtering the perceptually redundant information prior to compression. However, real JND cannot be well modeled with inaccurate masking equations in traditional approaches or image-level subject tests in deep learning approaches. Thus, this paper proposes a fine-grained JND prefiltering dataset guided by image quality assessment for accurate block-level JND modeling. The dataset is constructed from decoded images to include coding effects and is also perceptually enhanced with block overlap and edge preservation. Furthermore, based on this dataset, we propose a lightweight JND prefiltering network, IQNet, which can be applied directly to different quantization cases with the same model and only needs 3K parameters. The experimental results show that the proposed approach to Versatile Video Coding could yield maximum/average bitrate savings of 41\%/15\% and 53\%/19\% for all-intra and low-delay P configurations, respectively, with negligible subjective quality loss. Our method demonstrates higher perceptual quality and a model size that is an order of magnitude smaller than previous deep learning methods

    A Computational Model Of The Intelligibility Of American Sign Language Video And Video Coding Applications

    Full text link
    Real-time, two-way transmission of American Sign Language (ASL) video over cellular networks provides natural communication among members of the Deaf community. Bandwidth restrictions on cellular networks and limited computational power on cellular devices necessitate the use of advanced video coding techniques designed explicitly for ASL video. As a communication tool, compressed ASL video must be evaluated according to the intelligibility of the conversation, not according to conventional definitions of video quality. The intelligibility evaluation can either be performed using human subjects participating in perceptual experiments or using computational models suitable for ASL video. This dissertation addresses each of these issues in turn, presenting a computational model of the intelligibility of ASL video, which is demonstrated to be accurate with respect to true intelligibility ratings as provided by human subjects. The computational model affords the development of video compression techniques that are optimized for ASL video. Guided by linguistic principles and human perception of ASL, this dissertation presents a full-reference computational model of intelligibility for ASL (CIM-ASL) that is suitable for evaluating compressed ASL video. The CIM-ASL measures distortions only in regions relevant for ASL communication, using spatial and temporal pooling mechanisms that vary the contribution of distortions according to their relative impact on the intelligibility of the compressed video. The model is trained and evaluated using ground truth experimental data, collected in three separate perceptual studies. The CIM-ASL provides accurate estimates of subjective intelligibility and demonstrates statistically significant improvements over computational models traditionally used to estimate video quality. The CIM-ASL is incorporated into an H.264/AVC compliant video coding framework, creating a closed-loop encoding system optimized explicitly for ASL intelligibility. This intelligibility optimized coder achieves bitrate reductions between 10% and 42% without reducing intelligibility, when compared to a general purpose H.264/AVC encoder. The intelligibility optimized encoder is refined by introducing reduced complexity encoding modes, which yield a 16% improvement in encoding speed. The purpose of the intelligibility optimized encoder is to generate video that is suitable for real-time ASL communication. Ultimately, the preferences of ASL users determine the success of the intelligibility optimized coder. User preferences are explicitly evaluated in a perceptual experiment in which ASL users select between the intelligibility optimized coder and a general purpose video coder. The results of this experiment demonstrate that the preferences vary depending on the demographics of the participants and that a significant proportion of users prefer the intelligibility optimized coder

    Visual Saliency in Video Compression and Transmission

    Get PDF
    This dissertation explores the concept of visual saliency—a measure of propensity for drawing visual attention—and presents various novel methods for utilization of visual saliencyin video compression and transmission. Specifically, a computationally-efficient method for visual saliency estimation in digital images and videos is developed, which approximates one of the most well-known visual saliency models. In the context of video compression, a saliency-aware video coding method is proposed within a region-of-interest (ROI) video coding paradigm. The proposed video coding method attempts to reduce attention-grabbing coding artifacts and keep viewers’ attention in areas where the quality is highest. The method allows visual saliency to increase in high quality parts of the frame, and allows saliency to reduce in non-ROI parts. Using this approach, the proposed method is able to achieve the same subjective quality as competing state-of-the-art methods at a lower bit rate. In the context of video transmission, a novel saliency-cognizant error concealment method is presented for ROI-based video streaming in which regions with higher visual saliency are protected more heavily than low saliency regions. In the proposed error concealment method, a low-saliency prior is added to the error concealment process as a regularization term, which serves two purposes. First, it provides additional side information for the decoder to identify the correct replacement blocks for concealment. Second, in the event that a perfectly matched block cannot be unambiguously identified, the low-saliency prior reduces viewers’ visual attention on the loss-stricken regions, resulting in higher overall subjective quality. During the course of this research, an eye-tracking dataset for several standard video sequences was created and made publicly available. This dataset can be utilized to test saliency models for video and evaluate various perceptually-motivated algorithms for video processing and video quality assessment
    corecore