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Abstract

This dissertation explores the concept of visual saliency—a measure of propensity for draw-

ing visual attention—and presents various novel methods for utilization of visual saliency

in video compression and transmission. Specifically, a computationally-efficient method for

visual saliency estimation in digital images and videos is developed, which approximates

one of the most well-known visual saliency models. In the context of video compression, a

saliency-aware video coding method is proposed within a region-of-interest (ROI) video cod-

ing paradigm. The proposed video coding method attempts to reduce attention-grabbing

coding artifacts and keep viewers’ attention in areas where the quality is highest. The

method allows visual saliency to increase in high quality parts of the frame, and allows

saliency to reduce in non-ROI parts. Using this approach, the proposed method is able to

achieve the same subjective quality as competing state-of-the-art methods at a lower bit rate.

In the context of video transmission, a novel saliency-cognizant error concealment method

is presented for ROI-based video streaming in which regions with higher visual saliency

are protected more heavily than low saliency regions. In the proposed error concealment

method, a low-saliency prior is added to the error concealment process as a regularization

term, which serves two purposes. First, it provides additional side information for the de-

coder to identify the correct replacement blocks for concealment. Second, in the event that a

perfectly matched block cannot be unambiguously identified, the low-saliency prior reduces

viewers’ visual attention on the loss-stricken regions, resulting in higher overall subjective

quality. During the course of this research, an eye-tracking dataset for several standard

video sequences was created and made publicly available. This dataset can be utilized to

test saliency models for video and evaluate various perceptually-motivated algorithms for

video processing and video quality assessment.
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Chapter 1

Introduction

1.1 Visual Attention

It is well-known that due to the limited capacity of the brain, only a small amount of vi-

sual information that is received at the retina of our eyes can reach the latter processing of

the brain and impact our conscious awareness [3]. Visual attention provides a mechanism

for selection of particular aspects of a visual scene that are most relevant to our ongoing

behaviour while eliminating interference from irrelevant visual data in the background. Per-

haps, one of the earliest definitions of attention was provided by William James in 1890 in

his textbook “Principles of Psychology” [4]:

“Everyone knows what attention is. It is the taking possession by the mind, in clear and

vivid form, of one out of what seem several simultaneously possible objects or trains of

thought. Focalization, concentration, of consciousness are of its essence. It implies

withdrawal from some things in order to deal effectively with others.”

Over the last decades, visual attention (VA) has been studied intensely, and research has

been conducted to understand the deployment mechanisms of visual attention. According

to the current knowledge, the deployment of visual attention is believed to be driven by

“visual saliency,” that is, the characteristics of visual patterns or stimuli, such as a red

flower in a green grass field, that makes them stand out from their surroundings and draw

our attention in an automatic and rapid manner. Various computational models of visual

attention have then been developed based on this belief for different applications such as

robotics, navigation, image and video processing, and so on [5], [6]. Such computational

1



CHAPTER 1. INTRODUCTION 2

models of human visual attention are commonly referred to as visual saliency models, and

their goal is to predict where people are likely to look in a visual scene.

The perceptual coding of video using visual saliency models has been recently recognized

as an increasingly promising approach to achieve high-performance video compression [5].

The rationale behind most of the existing saliency-based video coding methods is to encode

a small area around the predicted gaze locations with higher quality compared to other

less visually important or interesting regions. Such a spatial prioritization is supported by

the fact that only a small region of several degrees of visual angle (i.e., the fovea) around

the center of gaze is perceived with high spatial resolution due to the highly nonuniform

distribution of photoreceptors on the human retina. Therefore, the idea is that it may not

be necessary to encode each video frame with a uniform quality because human observers

will perceive only a very small portion of each frame around their gaze locations, which

we may call regions-of-interest (ROIs). Hence, based on these principles, ROIs should be

encoded with a higher quality compared to the rest of the frame. The hope is that one may

save bits while achieving the same subjective quality as a conventional approach that grants

the same quality across the frame.

In practice, the encoding prioritization can be performed in several ways. In one popular

approach, the compression ratio is decreased in ROI parts of the frame whereas it is increased

in non-ROI parts. Using this approach, the overall compressed video size may decrease as

ROI parts of the frame usually constitute a small portion of the frame, so the extra bits spent

on their encoding are more than offset by the savings in non-ROI parts. Another approach

is to apply a so-called “foveation filter” [5] to the video content before the encoding process.

The foveation filter spatially blurs the video frame, increasingly with distance from ROI

parts of the frame. Hence, due to the loss of higher spatial frequencies in non-ROI parts

after applying the foveation filter, non-ROI parts take fewer bits to encode, and so bit rate

savings can be achieved. In another, more sophisticated approach [7], the prioritization may

be performed by a progressive or scalable scheme, for example, by delivering priority regions

first or continuously scaling the video quality depending on a given transmission bandwidth

or bit budget. Such encoding schemes are generally referred to as ROI-based video coding

methods.

Although ROI-based video coding methods can achieve high compression, the selection of

ROI parts remains an open and challenging problem. In recent years, several advances have

been achieved to tackle this problem with two approaches. The first approach involves the
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use of an eye-tracking device to interactively record eye gaze position of a human observer

on the receiving side in order to find the ROI in real time [8], [9]. A foveation filter is

then applied on the source video signal on the transmitting side, taking the detected ROI

into account, and the foveated video is transmitted to the receiver. In a variant of this

approach, gaze locations of a number of observers watching the same video are measured

by an eye-tracking device off-line, and their union is treated as the ROI [10]. Although this

approach can provide a good estimate of the ROI, it is neither generic nor cost-effective.

It is very time consuming as it requires an eye-tracking setup and collecting and training

various observers for every video to be compressed.

Rather than deducing ROI based on measurement, the second approach instead relies

on visual saliency models for finding ROI [5]. Here, ROIs are declared to be the parts of

the frame where viewers are most likely to focus their visual attention, according to the

employed saliency model. This general-purpose and automatic approach has the advantage

that it does not require human interaction, and so it is practical and cost-effective. The

downside, of course, is that it is only as accurate as the saliency model it relies on.

ROI-based processing can also be employed in the context of video transmission to

combat the effects of transmission channel errors. For instance, ROI parts of the frame

can be protected heavily (e.g., by using stronger channel codes) than non-ROI parts of the

frame [11], so that in the case of channel errors or losses, important parts of the frame can

still be decoded correctly. In this case, also, ROI could be detected either based on direct

eye-tracking measurement or based on visual saliency models.

Despite the increasing popularity of saliency-based video compression and transmission

methods, such approaches are still immature. Integrating a complex saliency model within

another video processing task can be cumbersome. The main goal of this dissertation is

to develop novel methods for better utilization of visual saliency in video compression and

transmission. For this purpose, we first develop an efficient approximation to a popular

visual saliency model that partially operates in the transform domain, and reuses some of

the data that is normally present in video compression. This reduces the computational

cost of estimating visual saliency and makes it easier to incorporate into various video

processing systems. We then utilize this approximation within a ROI-based framework for

efficient video compression and transmission.
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1.2 Contributions

The main contributions of this research are as follows.

1.2.1 An eye-tracking database for a number of standard video sequences

The best way to test the accuracy of visual saliency models is to compare their predictions

with real eye-tracking data. Such data can also be used to evaluate various saliency-based

video processing algorithms. However, eye-tracking devices are still fairly expensive and are

not easily accessible to most researchers. To facilitate the development and testing of novel

perceptually-motivated algorithms and models of visual attention, we developed a pub-

licly available database of eye-tracking data, collected on a set of standard video sequences

that are frequently used in video compression, processing, and transmission simulations. A

unique feature of this database is that it contains eye-tracking data for both the first and

second viewings of the sequence. The dataset is described in [12], and will be discussed in

Chapter 3.

1.2.2 Computationally-efficient visual saliency models

Among the existing saliency models, the Itti-Koch-Niebur (IKN) saliency model [2] is the

most well-known and widely-used model. However, this bottom-up model of visual attention

is very complex as it requires multiresolution analysis of the input image or video in in various

feature channels such as intensity, color, and orientation. In this dissertation, we present

two computationally-efficient saliency models inspired by the IKN model. Both models are

described in Chapter 4.

The first proposed model is a convex approximation to the IKN saliency model. It

consists of two parts: spatial and temporal. The spatial part can be used to estimate

saliency in static images, whereas the temporal part in conjunction with the spatial part

can be utilized to estimate saliency in video. The model estimates saliency using the signal

energy in the Discrete Cosine Transform (DCT) domain, which makes it useful for saliency

estimation in DCT-based image and video processing tasks. This model was first introduced

in [13], and its application to video error concealment will be described in Chapter 6.

Although this model is slightly less accurate than the IKN model, it has several practical

advantages. First, its computational complexity is much lower than that of the IKN model,

making it attractive for real time implementation. Second, it is convex in the input data.
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This means that when the saliency estimate produced by this model is linearly combined

with other convex measures (e.g., mean squared error), it results in a convex function,

which can lead to convex optimization formulations (and corresponding efficient solutions)

in various image and video processing tasks. One example is given in Chapter 6, where

this approximation is used to make a saliency-cognizant error concealment problem convex,

which in turn leads to an efficient solution.

The second proposed saliency model uses the convex approximation to the spatial IKN

model mentioned above, but improves the temporal saliency estimation via global motion

compensation [14]. We refer to this method as Global Motion-Compensated (GMC) saliency

estimation. Overall, this method is not convex, but is more accurate than the IKN model

on certain sequences with camera motion. This method was first introduced in [15], and

will be used in saliency-aware video compression in Chapter 5.

1.2.3 Saliency-aware video compression

As stated earlier, in ROI-based video coding, ROI parts of the frame are encoded with higher

quality than non-ROI parts. At low bit rates, such encoding may produce attention-grabbing

coding artifacts, which may draw viewers attention away from ROI, thereby degrading visual

quality. In this dissertation, we present a saliency-aware video compression method for

ROI-based video coding. The proposed method aims at reducing salient coding artifacts in

non-ROI parts of the frame in order to keep users attention on ROI. Further, the method

allows saliency to increase in high quality parts of the frame, and allows saliency to reduce

in non-ROI parts. The ideas behind this approach are described in [16] and [15], and will

be discussed in Chapter 5.

1.2.4 Saliency-cognizant video error concealment

Visual saliency can be an effective tool in dealing with errors and losses in video transmission,

and hiding their effects from the viewers. In this dissertation, we add a low-saliency prior

to the under-determined problem of error concealment as a regularization term. There are

multiple reasons for doing so. First, in ROI-based video transmission, low-saliency prior

is likely the correct side information for the lost block and helps the client to identify the

correct replacement block for concealment. Second, in the event that a perfectly matched

block cannot be identified, the low-saliency prior reduces viewers’ visual attention on the
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loss-stricken region, resulting in higher overall subjective quality. In a way, the low-saliency

prior tries to make error concealment live up to its name by attempting to hide damaged

blocks from viewers attention. It is the low-saliency prior that puts concealment into error

concealment – the rest is just interpolation. To the best of our knowledge, our work is the

first to apply saliency analysis for error concealment in video transmission. This approach

has been described in [1] and [13], and will be discussed in Chapter 6.

1.2.5 Scholarly publications

My research efforts during my Ph.D. program have resulted in the following scholarly pub-

lications. Please note that the material in this dissertation is only related to several of the

most recent ones, specifically journal papers 1-3, and conference papers 3 and 5.

Journal Papers:

1. H. Hadizadeh and I. V. Bajić, “Saliency-aware video compression,” submitted to IEEE

Trans. Image Processing, Feb. 2013.

2. H. Hadizadeh, I. V. Bajić, and G. Cheung, “Video error concealment using a computation-

efficient low saliency prior,” submitted to IEEE Trans. Multimedia, Dec. 2012. Cur-

rently under revision. (Invited Paper)

3. H. Hadizadeh, M. J. Enriquez, and I. V. Bajić, “Eye-tracking database for a set of

standard video sequences,” IEEE Trans. Image Processing, vol. 21, no. 2, Feb. 2012.

4. H. Hadizadeh and I. V. Bajić, “Rate-distortion optimized pixel-based motion vector

concatenation for reference picture selection,” IEEE Trans. Circuits Syst. Video

Technol., vol. 21, no. 8, pp. 1139-1151, Aug. 2011. (Among top 25 most download

papers from this journal in August 2011)

5. H. Hadizadeh and I. V. Bajić, “Burst loss resilient packetization of video,” IEEE

Trans. Image Processing, vol. 20, no. 11, pp. 3195-3206, Nov. 2011.

Conference Papers:

1. V. A. Mateescu, H. Hadizadeh, and I. V. Bajić, “Evaluation of several visual saliency

models in terms of gaze prediction accuracy on video,” Proc. IEEE Globecom’12

Workshop: QoEMC, pp. 1304-1308, Anaheim, CA, Dec. 2012.
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2. H. Hadizadeh, M. Fatourechi, and I. V. Bajić, “An automatic lyrics recognition system

for digital videos,” presented at IEEE MMSP’12 (On-going Work Track), Banff, AB,

Sep. 2012.

3. H. Hadizadeh, I. V. Bajić, and G. Cheung, “Saliency-cognizant error concealment

in loss-corrupted streaming video,” Proc. IEEE ICME’12, pp. 73-78, Melbourne,

Australia, Jul. 2012. (Best Paper Runner-up)

4. H. Hadizadeh, I. V. Bajić, P. Saeedi, and S. Daly, “Good-looking green images,” Proc.

IEEE ICIP’11, pp. 3177-3180, Brussels, Belgium, Sep. 2011.

5. H. Hadizadeh and I. V. Bajić, “Saliency-preserving video compression,” presented at

IEEE AVCC, in conjunction with IEEE ICME’11, Barcelona, Spain, Jul. 2011.

6. H. Hadizadeh and I. V. Bajić, “Pixel-based motion vector concatenation for reference

picture selection,” Proc. IEEE ICME’10, pp. 209-213, Singapore, July 2010.

7. H. Hadizadeh, S. Muhaidat, and I. V. Bajić, “Impact of imperfect channel estimation

on the performance of inter-vehicular cooperative networks,” presented at 25th Queen’s

Biennial Symposium on Communications (QBSC’10), Kingston, ON, Canada, May

2010.

8. H. Hadizadeh and I. V. Bajić, “Burst loss resilient packetization of video,” Proc. IEEE

ICC’10, Cape Town, South Africa, May 2010.

9. H. Hadizadeh and I. V. Bajić, “NAL-SIM: An interactive simulator for H.264/AVC

video coding and transmission,” presented at Proc. IEEE CCNC’10, Las Vegas, NV,

USA, Jan. 2010.

1.3 Organization

This dissertation is organized as follows. In Chapter 2, we present a brief description of the

concept of visual attention and its deployment mechanisms. We also present a survey of

several existing computational models of visual attention. In particular, we briefly describe

two popular saliency models, the Itti-Koch-Neibur (IKN) model [2] and the Itti-Baldi (IB)

model [17]. In Chapter 3, we present our eye-tracking database for a number of standard

video sequences. Two novel computationally-efficient visual saliency models are presented
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in Chapter 4. Our proposed saliency-aware video compression method is presented and

evaluated in Chapter 5. The proposed saliency-cognizant error concealment method for

video streaming is described in Chapter 6. Finally, the conclusions and future directions are

given in Chapter 7.



Chapter 2

Visual Attention and Its

Computational Models

It is known that the brain in primates has a “massively parallel” computational structure [3].

However, similar to any physical system, the processing and computational resources of

the brain are limited. Every time that we open our eyes to the world, we encounter an

overwhelming amount of visual information. It has been estimated that the amount of visual

information coming to our visual system is on the order of 108 bits per second, which far

exceeds the processing power and computational capacity of our brain [3]. Nevertheless, we

are able to experience an almost effortless understanding of our visual world. This requires

separating relevant information from irrelevant data in a preferential and serial manner.

Such a process is operationalized by the mechanisms of “visual attention” [3, 18], which

allows us to break down the daunting problem of visual scene understanding into a rapid

series of computationally less demanding, localized visual analysis problems [19]. According

to [20], attention is the cognitive process of selectively concentrating on one aspect of the

environment while ignoring other irrelevant things. Attention has also been referred to as

the allocation of processing resources [20]. Hence, visual attention optimizes the use of our

visual system’s limited resources for gathering and processing the most relevant information

in a complex visual environment. In other words, visual attention turns our looking into

seeing [18].

The topic of visual attention is vast, and since 1980, the concept of visual attention has

been studied in several thousands of scientific papers with an increasingly growing rate [18],

9
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[21], [22], [23], [3]. According to a recent review on visual attention [18], there are three

main types of visual attention: (1) spatial attention, which can be either overt (i.e., when

an observer moves his/her eyes to focus on a specific region in the visual scene) or covert

(i.e., when a person mentally focuses on another sensory stimuli different from the stimuli at

his/her current fixation); (2) feature-based-attention (FBA), which can be deployed covertly

to specific aspects (e.g., color, orientation or motion direction) of objects in the environment,

regardless of their location; (3) object-based attention in which attention is influenced or

guided by a specific object structure or the relevance between different objects in a visual

scene. At any given time, these three types of visual attention can co-exist [18]. For instance,

when waiting to meet a friend in a restaurant, we may direct our spatial attention to the

entrance door of the restaurant (i.e., where our friend is likely to appear), and deploy our

FBA to red objects, assuming that our friend is wearing a red shirt [18].

2.1 Mechanisms of attentional deployment

Interesting questions related to the concept of visual attention are how the selection of one

particular spatial location or object in a cluttered visual scene is performed, or where in a

visual scene, the visual attention is deployed? In other words, if our brain can process only

one region or object at a time, then how do we select the target of our attention? Many

studies have been conducted for finding answers to these questions. Much evidence has been

accumulated in favor of the following two principal beliefs about the mechanisms of visual

attention deployment: [3],[24],[25],[26], [6]

1. There is a “bottom-up,” fast, primitive, and stimulus-driven mechanism that biases

the observer towards selecting stimuli based on their “visual saliency.” Here, “visual

saliency” means how much a certain stimulus (e.g., a region or object) is distinct from

its surroundings in terms of visual attributes such as color, intensity, and orientation,

so that it stands out from its surroundings. According to this scene-driven mechanism,

visual attention is attracted towards visually salient locations in a seemingly effortless

and automatic manner. Based on this mechanism, a red flower in a green grass field

is visually salient due to its high color contrast, drawing visual attention towards

itself. The terms “salient” and “visual saliency” are often utilized in the context of

bottom-up modeling of visual attention [6].
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2. A “top-down,” slow, voluntary and user-driven mechanism with variable selection

criteria that intentionally directs the visual attention towards specific locations or ob-

jects in the visual scene, regardless of their visual saliency. Such a task-dependent and

expectation-driven mechanism can modulate or even sometimes override the bottom-

up deployment of visual attention. For instance, if we want to find our misplaced

car keys, those keys (i.e., their color, shape, etc.) become the primary drivers of our

attention; other object in the room would have a hard time drawing our attention in

this case.

The bottom-up control of visual attention relies on the fact that the brain does not

process all parts of a visual scene equally well, but instead provides a selective prioritization

with strong neural responses to a few parts of the scene, and poor responses to everything

else. Several studies provide direct support for the idea that different visual stimuli in a

visual scene compete for activity to draw visual attention [27], [28], [3], [19]. Those parts

that are very different from their surroundings can elicit a strong neural response, and can

draw visual attention to themselves. They are said to be salient. Directing attention to

other, non-salient parts, is thought to require voluntary effort, which can be employed by

the top-down mechanism of visual attention [3].

The top-down cues are often determined by cognitive phenomena such as knowledge,

expectations, reward, tasks, and goals [6]. One of the most popular examples for showing

the effect of the top-down guidance of visual attention on the eye movements is from the

following experiment described in [29]. Subjects were asked to watch a scene showing a

room with a family and an unexpected visitor entering the room. Some subjects were

allowed to freely watch the scene, while others were asked questions such as “what are the

ages of the people in the room?” or “estimate the material circumstances of the family.”

The results of this experiment showed that the eye movements were considerably different

under each question, which suggests that a task can significantly affect the deployment of

attention. Several researchers have studied the role of the task in the deployment of visual

attention in natural environments, for tasks like driving, sandwich making, playing cricket,

and walking [30], [31], [32].
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2.2 Computational models of visual attention

In the past 25 years, modeling visual attention has been a very active research area. Vari-

ous computational models of human visual attention (a.k.a. “saliency models”) have been

proposed in both the computer vision community and biological vision and neuroscience

community. The main goal of such models is to predict the target of visual attention in a

given visual scene, for example in a given image or video. In other words, their goal is to

predict where people are likely to look.

In the computer vision community, the design and development of the so-called “saliency

detectors” or “interest point detectors” has been a significant research objective in the past

decades. Various saliency detectors have been proposed and adopted in many computer

vision applications such as object tracking and recognition, robotics, image and video com-

pression, advertising, etc. The majority of such models are closely related to object detection

and feature extraction methods. Broadly speaking, the existing saliency detectors proposed

in the computer vision literature can be classified into the following three classes:

• In the first class, the saliency detection problem is formulated as the detection of spe-

cific visual attributes such as edges, corners, contours, blobs, structure-from-motion,

and so on [33], [34]. A prominent advantage of such bottom-up saliency detectors is

that they can be defined with an explicit mathematical formulation, and can be imple-

mented using efficient computational methods. A major drawback of such detectors,

however, is that they cannot be generalized well for object recognition problems, and

so they cannot provide useful information for the desired recognition task at hand.

For instance, consider a white egg on top of a tree branch. A saliency detector that

uses corner information will show a strong response to the highly textured tree branch,

but not to the plain egg, even though the egg may be salient.

• In the second class, the saliency is defined as a measure of “image complexity.” Several

image complexity measures have been proposed in this context. For instance, in [35],

the saliency is defined as the variance of Gabor filter responses in different orientation

and frequency bands. In [36], the absolute values of 2-D wavelet coefficients are used

a measure of saliency. In [37], the entropy of local intensity histograms in an image

is used for saliency detection. The main advantage of such models is that they can

detect several low-level image features in a unified and generic manner. However,
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similar to the first class, their main drawback is that they cannot directly provide

useful information for the recognition task of interest.

• In the third class, the saliency detection problem is formulated as an object detection

and recognition problem. Hence, the models in this class can be considered as top-

down saliency detectors. Examples of such models include those proposed in [38], [39],

[40]. Several object detection approaches can be utilized by the models in this class.

For instance, the deformable part model proposed in [41] and the attentional cascade

of Viola and Jones [42] can be employed to achieve a very high detection accuracy for

several objects such as cars, faces, and persons. The main advantage of such models is

their superior performance for salient object detection, especially in cluttered scenes.

However, by their very nature, such models are application-specific and hence have a

limited application scope.

The main objection to the saliency detection models proposed in the computer vision

literature is that they are application-oriented and seldom have a connection to the bio-

logical architecture of the human visual system. The main goal of such models is not to

explain attentional behavior. Instead, the goal is usually to make a computer perform a

vision-related task with the same end result as a human, regardless of whether or not the

intermediate processing is performed in the same way as in human vision. While this is per-

fectly appropriate for application purposes, methods that shed light on the actual principles

of human vision may have greater scientific value.

In the biological vision community, both the neurophysiological and psychophysical prop-

erties of visual attention have been extensively studied, and several computational models

of human visual attention have been proposed. Most such models emphasize biological

plausibility, and their goal is to replicate what is known about the biology and the neural

architecture of the human visual attention mechanisms. With a few exceptions [29], [43], the

majority of such models have been proposed for the bottom-up mechanism of visual atten-

tion. The reason is that the bottom-up mechanism of visual attention is better understood

due to its reliance on low-level processing tasks, which are easier to measure and study.

Meanwhile, the top-down attention relies on higher-level tasks in the brain that are still

not well understood. Moreover, as we mentioned earlier, top-down cues are often related to

tasks, expectations, rewards, and current goals. Hence, they are application-specific, related

to context and prior knowledge, and therefore difficult to model.
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The basis of many of existing attention models is the well-known “Feature Integration

Theory” (FIT) proposed by Treisman and Gelade [44]. This theory postulates which visual

features are important and how they are combined together to direct visual attention in

search tasks [6]. More explicitly, FIT states that “different features are registered early,

automatically and in parallel across the visual field, while objects are identified separately

and only at a later stage, which requires focused attention” [44]. Based on FIT, Koch and

Ullman [45] proposed a computational model to combine these features, and they introduced

the concept of a two-dimensional topographical “master saliency map” that represents the

saliency of various regions and objects in a given visual scene. They also proposed a winner-

take-all (WTA) neural network that selects the most salient locations in a given saliency

map. Competition among different neurons in this network results in a single winning

location that corresponds to the most salient region in the scene. The next most salient

region in the scene can be found by inhibition of the current most salient object using a

specific inhibition of return (IOR) operator. Using this mechanism, the system can predict

the next focus of visual attention in a serial fashion. Several systems were proposed to

implement the Koch and Ullman model for computing the saliency maps of digital static

images [46], [47]. The first comprehensive implementation of the model, however, was

developed by Itti et al. [2]. This system was designed in a biologically plausible manner in

the sense that it attempts to replicate the biological and neural processes involved in human

vision. Itti et al. applied their attention model to synthetic and natural scenes, and they

showed that their model’s predictions have a high correlation with real eye-tracking data in

free-viewing tasks, which verifies the effectiveness of their method for saliency detection in

digital images [2].

Although the majority of existing models of visual attention have been developed for

static images, there also exist several models for saliency detection in video [5], [48], [49],

[50], [6]. Almost all such models consist of a spatial component and a temporal compo-

nent, which distinguishes them from the purely spatial models for static images. Some of

the saliency detection methods for video use a motion and a flicker channel for temporal

saliency detection [5]. Other models attempt to capture the spatio-temporal features of a

video by more sophisticated methods. For instance, the method in [51] computes the tem-

poral saliency based on the motion contrast obtained from the homographic transformation

between successive video frames. In [52], the temporal saliency is estimated in an irregu-

larity detection framework by comparing the spatio-temporal patches of the video with a
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learned dataset of expected spatio-temporal patches.

Following the seminal model by Itti et al. [2], many other bottom-up saliency models

were proposed in the literature based on FIT. All such models of visual attention share

three common components. The first component is the extraction of various low-level visual

features from a given input image or video signal. Inspired by the processing mechanism of

neurons in the primary visual cortex (V1) of the human brain and the feature integration

theory, these features include various simple visual attributes such as intensity or luminance

contrast, color opponency, orientation and motion [2]. The second common component is the

so-called “center-surround” mechanism by which contrast features are computed in different

feature channels [2], [17], [53]. The center-surround mechanism is supported by the neural

responses of the visual receptive fields of neurons in the lateral geniculate nucleus (LGN)

[54] and V1 cortex of the human brain. Typical visual neurons are most sensitive in a small

region of the visual field (the center), and inhibit the neural response to stimuli presented

in a broader region concentric with the center (the surround) [2]. Hence, such architectures

can detect locations that stand out from their surroundings. The third component is the

computation of a “master saliency map” by which the saliency of different locations in a

visual scene can be estimated.

According to a recent survey of visual attention models presented in [6], the existing com-

putational models of visual attention can be classified into the following general categories

based their mechanism of computing saliency:

• Cognitive Models: These models have been built based on psychological and neuro-

physiological findings and cognitive concepts. Many of the existing attention models

fall within this category, especially those that were developed in the biological and

neuroscience community. Notable (popular) models from this category are the Itti-

Koch-Niebur (IKN) model [2] and the model proposed by Le Meur et al. [55]. The

IKN model is the most popular and widely-cited attention model, and it has been the

basis for the development and benchmarking of many other attention models. Hence,

it can be considered as the representative bottom-up attention model. Due to its

importance, we briefly describe it in Section 2.2.1. The model proposed by Le Meur

et al. [55] is also a bottom-up model, and shares some common features with the IKN

model. The main difference between these two models is that the model of Le Meur et

al. uses several psychophysical properties of the human visual system (HVS) [56] such
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as the luma and chroma contrast sensitivity functions (CSFs), multi-band frequency

decomposition, visual masking, and center-surround computations. It also uses the

temporal information so that it can be utilized for saliency detection in video as well.

In other words, the model in [55] is a spatio-temporal saliency model while the original

IKN model [2] is a spatial saliency model. However, in [5], several temporal features

such as motion and flicker were added to the IKN model, which enabled its use for

saliency detection in video.

• Bayesian Models: The models in this class are based on the Bayes’ theorem to capture

subjective aspects of sensory information under prior knowledge. More specifically, in

these models, the sensory information (e.g., detected features) are combined with

prior knowledge (e.g., scene context) in a probabilistic manner using the Bayes’ rule

to detect a salient region in a visual scene [6]. Several models within this category

are [17], [57], [58], [59], [60], [61]. A representative model in this category is the Itti-

Baldi (IB) model proposed in [17]. In this model, a Bayesian definition of surprise was

presented. In their definition, a surprising stimulus is the one that significantly alters

the prior beliefs of a Bayesian observer. To quantify the amount of surprise, they

used the Kullback-Leibler (KL) divergence [62] between posterior and prior beliefs. In

Section 2.2.2, we briefly describe the IB model.

• Decision Theoretic Models: The models in this category are based on the “discriminant

saliency hypothesis” [63], which states that saliency is a discriminant process, and

all saliency processes are optimal in a decision-theoretic sense, i.e., with minimum

probability of decision error. Under this framework, the saliency of each location in

the visual field is considered as the discriminant power of the image features with

respect to a classification problem that opposes a class of interest (i.e., the target)

to all other visual classes. Notable (popular) model in this category is the model

proposed by Gao and Vasconcelos [63].

• Information Theoretic Models: These models are developed based on the hypothesis

that perceptual systems are designed to maximize information collected from the en-

vironment, so that only the most relevant and informative parts of the visual field are

selected and the rest is discarded [6]. The idea behind such models is supported by the

biological evidence that the primate visual system is built on the principle of estab-

lishing a sparse representation of image statistics [53]. The notable (popular) model
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in this category is the model proposed by Bruce and Tsotsos [53]. Their bottom-up

model is based on Shannon’s self-information measure for computing saliency of image

regions. In their formulation, saliency of a local image region is the information that

region conveys relative to its surroundings, based on the probability density functions

of various RGB features.

• Graphical Models: The attention models in this category consider eye movements as

stochastic time series. Since there are hidden variables influencing the eye movements,

graphical networks [64] such as Hidden Markov Models (HMM), Dynamic Bayesian

Networks (DBN), and Conditional Random Fields (CRF) have been used by such

models to predict eye fixations or movements. The well-known model in this category

is the Graph-Based Visual Saliency (GBVS) model proposed by Harel et al. [38].

In this model, similar to the IKN model, several feature maps are first created at

different scales. A fully-connected graph is then created over all grid locations of each

feature map. The weight between each pair of nodes in each graph is computed by

the similarity of the feature values of the two nodes, as well as their spatial distance.

The resulting graphs are then considered as Markov chains, and a random walker [64]

is used to find the equilibrium distribution of each graph. The obtained equilibrium

distributions are used to construct the master saliency map for a given image.

• Spectral Analysis Models: In these attention models, saliency is estimated in the spec-

tral (frequency) domain instead of the spatial (pixel) domain. The popular models in

this category are the spectral residual saliency model proposed by Hou and Zhang [65]

and the “Phase Spectrum of Quaternion Fourier Transform” (PQFT) model proposed

by Guo and Zhang [48]. The spectral residual saliency model in [65] was designed based

on the idea that statistical singularities in the amplitude of the Fourier spectrum of an

image may be responsible for salient regions. Hence, by finding such regions, one can

construct a saliency map of the scene. In the PQFT method, it was observed that the

phase spectrum of the Fourier transform can also be utilized for saliency prediction.

Based on this idea, a quaternion representation of a video was proposed in [48], and

it was used for spatio-temporal saliency detection.

• Pattern Classification Models: The models in this category employ machine learning

approaches for discovering the relation between image features and measured eye fixa-

tions. A popular model in this category is the model proposed by Kienzle et al. [66], in
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which a nonparametric bottom-up approach was proposed for saliency estimation by

learning attention directly from human eye fixation data. In their method, a support

vector machine (SVM) [64] was employed to learn the relation between local image

intensities and real eye fixation data. The results were a set of spatial filters similar to

center-surround filters, that can be used for saliency estimation in natural images. For

video, they proposed to learn a set of temporal filters similar to their spatial filters.

A recent survey of various attention models can be found in [6]. In the sequel, we

briefly describe two popular attention models: The IKN model [2] and the Itti-Baldi (IB)

model [17].

2.2.1 The Itti-Koch-Niebur model

Among the existing bottom-up computational models of visual attention, the Itti-Koch-

Niebur (IKN) model [2] is one of the most well-known and widely cited. In this biologically

plausible model, the visual saliency of various regions is predicted by analyzing the input

image through a number of pre-attentive independent feature channels, each locally sensi-

tive to a specific low-level visual attribute, such as local opponent color contrast, intensity

contrast, and orientation contrast. More specifically, nine spatial scales are created using

dyadic Gaussian pyramids, which progressively low-pass filter and down-sample the input

image, yielding an image-size-reduction factor ranging from 1:1 (scale zero) to 1:256 (scale

eight) in eight octaves [2].

The contrast in each feature channel is then computed using a “center-surround” mech-

anism, which is implemented as the difference between fine and coarse scales: the center is

a pixel at scale c ∈ {2, 3, 4}, and the surround is the corresponding pixel at scale s = c+ d,

with d ∈ {3, 4}. The “center-surround” mechanism simulates the visual receptive fields in

the retina, lateral geniculate nucleus (LGN), and primary visual cortex [56], [2]. Such a

mechanism is sensitive to local spatial discontinuities. Therefore, it can be used to detect

locations which stand out from their surroundings. The across-scale difference between two

levels of the pyramid is obtained by interpolation to the finer scale and point-by-point sub-

traction. The obtained contrast (feature) maps are then combined across scales through a

non-linear normalization operator to create a “conspicuity map” for each feature channel.

The normalization operator globally promotes maps with few strong peaks of activity, while
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globally suppressing maps that contain numerous comparable peaks [2]. Such a normaliza-

tion operator can be supported biologically as it simulates the operation of cortical lateral

inhibition mechanism in the visual cortex [2], [56].

The conspicuity maps are then resized to level 4, and combined together via the same

normalization operator to generate a “master saliency map” whose pixel values predict

saliency. The maximum of the obtained master saliency map is considered as the most salient

location, and determines the (most likely) focus of attention (FOA). The next gaze location

can be predicted by inhibiting the current gaze location through a specific “inhibition of

return” process [3], [2], which is implemented in the model by a biologically-plausible 2D

“winner-take-all” (WTA) neural network [2], [3].

A motion and flicker channels were added to the IKN model in [67] to make it applicable

to video. The flicker channel is created by building a Gaussian pyramid on the absolute

luminance difference between the current frame and the previous frame. Motion is computed

from spatially-shifted differences between intensity pyramids from the current and previous

frame [67]. The same center-surround mechanism that is used for the intensity, color, and

orientation channels is used for computing the motion and flicker conspicuity maps, which

are then combined with spatial conspicuity maps into the final saliency map. Fig. 2.1 shows

a schematic diagram of the IKN model.

2.2.2 The Itti-Baldi model

In [17], Itti and Baldi proposed a bottom-up model of visual attention based on the con-

cept of “Bayesian Surprise.” They argued that human attention is directed towards “sur-

prising locations.” They presented a principled definition of “surprise,” and developed a

computational model of visual attention in a Bayesian framework, which we shall call the

Itti-Baldi (IB) model. Based on their definition, surprise is strong when a new observation

substantially changes the previous beliefs of a Bayesian learner about the world. This is

encountered when the distribution of posterior beliefs of the learner highly differs from its

prior distributions. In their proposed framework, the amount of surprise is quantified by

the Kullback-Leibler Divergence (KLD) [62] between the posterior and prior distributions

of beliefs of the Bayesian learner.

The IB model retains the same feature channels of the IKN model, and attaches a

surprise detector to each location of each feature channel. Surprise detectors compute both

temporal surprise and spatial surprise, and they estimate a total spatio-temporal surprise
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Figure 2.1: A schematic diagram of the IKN model [2].

value, which is computed by summing the spatial and temporal surprise values. It is assumed

that surprise sums across feature channels, so that a location may be surprising by its color,

motion, orientation, and so on. This results in the final surprise map for a given visual

scene. Since the surprise is taken as a measure of saliency, the surprise map is the final

master saliency map of this model.



Chapter 3

Eye-Tracking Data

As mentioned in Chapter 2, in the literature, several computational models of visual at-

tention (VA) have been developed to predict gaze locations in digital images and video.

Although the current VA models provide an easy and cost-effective way for gaze prediction,

they are still imperfect. One must realize that human attention prediction is still an open

and challenging problem. Ideally, the most accurate approach to find actual gaze locations

is to use a gaze-tracking (aka. eye-tracking) device. In a typical gaze-tracking session, the

gaze locations of a human observer are recorded when watching a given image or video

clip using a remote screen-mounted or a head-mounted eye-tracking system. However, eye-

trackers are still fairly expensive, and are not easily accessible to most researchers. This has

intensified the need for eye-tracking datasets. In the past few years, several research groups

have provided eye-tracking data for various image collections and videos. A survey of the

existing eye-tracking datasets is presented in Section 3.1.

Over the past two decades, a set of “standard” video sequences (for example, Foreman,

Flower Garden, etc.) have been frequently used by many researchers in the field of video

compression, processing, and quality assessment. Given the growing popularity of VA-based

video compression and quality assessment methods, the need for an eye-tracking database

for these standard sequences is becoming apparent. Although there are several existing eye-

tracking datasets mentioned in the literature, until the publication of our dataset in [12],

there was no publicly available eye-tracking data for the standard sequences mentioned

above.

In this chapter, we present our dataset from [12], which is a publicly available, free,

on-line database of gaze-tracking data collected on a set of standard video sequences. The

21
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database includes twelve uncompressed YUV (one luma channel, Y, and two chroma chan-

nels, U and V) video sequences in CIF (Common Intermediate Format, 352×288) resolution

with their corresponding eye-tracking data. To generate the eye-tracking data, the sequences

were presented to 15 non-expert subjects two times, and their gaze fixation points were

recorded for each frame of each of the 12 selected video sequences using a head-mounted

eye-tracking device. The recorded gaze locations provide subjects’ gaze shifts caused by sub-

jects’ overt visual attention in both the first and the second viewing. We present an analysis

of the congruency of the first and second viewing for each sequence. We also compare the

accuracy of two well-known visual attention models, the Itti-Koch-Niebur (IKN) model [2]

and the Itti-Baldi (IB) model [17], [57], [58], on the obtained eye-tracking data. The dataset

can be utilized for various applications including psychovisual video compression, perceptual

video quality assessment, and attention prediction purposes.

This chapter is organized as follows. Section 3.1 presents an overview of existing image

and video eye-tracking datasets. Section 3.2 describes our dataset [12] for “standard” se-

quences. Some results obtained using the dataset are presented in Section 3.3, followed by

conclusions in Section 3.4.

3.1 Existing eye-tracking data sets

In recent years, several eye-tracking datasets for images and videos have been developed

and made publicly available by various research groups. In this section, we present a brief

overview of such datasets.

3.1.1 Existing eye-tracking datasets for static images

In [68], an eye-tracking dataset of 120 static images of resolution 682×512 was provided. In

this dataset, the eye fixations of 20 subjects were recorded in a free-viewing task. The images

show indoor and outdoor scenes. The viewing distance was fixed at 75 cm, and each image

was presented for 4 seconds with a 2-second gray mask in between. In [69], the eye-fixation

data of 15 subjects on 1003 RGB indoor and outdoor images of resolution 1024 × 768 was

provided. There were 779 landscape images and 228 portrait images in this dataset. The

viewing distance was fixed at 48 cm, and each image was displayed for 3 seconds. In [70], the

eye-tracking data of 7 subjects of 250 RGB images of resolution 1024 × 768 was provided.

The viewing distance was fixed at 80 cm. The subjects were involved in three different tasks
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including a free-viewing task, searching for a specific object (e.g., a face, a banana), and

an image recognition memory task in which subjects were asked to answer whether or not

they have seen the image before. In [66], the gaze data of 14 subjects on 200 RGB images

of resolution 1024× 768 was provided. The viewing distance was fixed at 60 cm, and each

image was presented for 3 seconds. A comprehensive survey of the existing eye-tracking

datasets for static images can be found in [6].

3.1.2 Existing eye-tracking datasets for video

There are also several existing eye-tracking datasets for video. For instance, in [55], an eye-

tracking dataset of 7 CIF (352× 288) video clips in a free-viewing task was provided. The

clips were 4.5 to 33.8 seconds long, and they contained faces, sport events, logos, landscapes,

and instructions. In total, there were about 2451 video frames in this dataset. For each

clip, the data from 17-27 subjects is provided. A 50 Hz eye-tracker was utilized to record

the eye fixations in this dataset. The viewing distance for the subjects was about 81 cm.

In [50], an eye-tracking dataset of 53 short video clips of resolution 720 × 576 was

presented. The eye fixations of 15 subjects were recorded with an eye-tracker at 500 Hz in

a free-viewing task. The video clips were about 1.3 seconds long, and they were collected

from TV shows and news, animated movies, commercials, sports, music videos, indoor and

outdoor scenes, etc. In total, there were about 1700 video frames in this dataset. The

viewing distance was fixed at 57 cm. The eye-tracker was calibrated after every 5 video

clips, and a control drift was performed before each stimulus.

In [17], the eye-tracking data of 8 subjects on 50 video clips (4 to 6 subjects per video

clip) with a total length of 25 minutes (46,000 frames) was provided. The resolution of the

video clips was 640× 480. The video clips came from different genres such as TV programs,

video games, outdoor scenes, crowds, sports, commercials, test stimuli, etc. The clips were 6

to 90 seconds long. An eye-tracker with a sampling rate of 240 Hz was utilized to record the

right-eye position. A 9-point calibration was used to calibrate the eye-tracker after every 5

video clips. The viewing distance was fixed at 80 cm. About 200 calibrated eye movement

traces (10,192 saccades) were analyzed, corresponding to 4 different observers for each of

the 50 clips.

In [71], the gaze data of 5 subjects watching 24 game-play sessions with total length of

7.5 hours was recorded with a 240 Hz eye-tracker. Each game-play session was divided into

smaller video segments. The video segments were 4-5 minutes long. In total, there were
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about 216,000 video frames in this dataset. A 9-point calibration procedure was used before

and after each video segment. The viewing distance was fixed at 80 cm.

In [72], a database of HD video clips alongside their eye-tracking data was presented.

Fifty video clips of resolution 1920 × 1080 were used in this database. Each video clip

was 300 frames long, and they included both indoor and outdoor scenes at daytime. The

outdoor scenes included library, pool, traffic road, garden, lawn, park, etc. The indoor scenes

included dinner hall, lab rooms, etc. Fourteen subjects were instructed to watch the video

clips without any specific task, and they were asked to follow whatever interesting things

they might like. A 240 Hz infrared-video-based eye-tracker was utilized to record the eye

positions. The viewing distance was fixed at about 98 cm. A 9-point calibration procedure

was used to calibrate the eye-tracker every ten video clips. The collected eye-tracking data

was filtered for blinks, motion, eye wetting, and squinting. Also, the calibrated eye traces

were visually inspected for their validity.

In [73], 23 subjects were asked to manually label salient regions of 431 videos with total

length of about 7.5 hours (764,806 frames). This dataset covers videos from six different

genres: documentary, advertisement, cartoon, news, movie and surveillance. In total, 62,356

key frames were selected from these videos, and 23 subjects were then asked to manually

label salient regions in these key frames with one or multiple rectangles. Note that this is

not really an eye-tracking dataset, since the salient regions were labeled manually by the

subjects, which is a much more complicated task than free viewing. Another drawback of

this dataset is that the salient regions were constrained to be collections of rectangles.

In [74], the eye gaze data of 10 subjects watching 2 video clips were recorded using a

head-mounted eye-tracker. The eye-tracker tracks the center of the pupil based on dark

pupil-corneal reflection video occulography at a sampling frequency of 60 Hz. Each video

clip was one minute long, and it was extracted from a black-and-white film. The resolution

of each video clip was 640× 480. The viewing distance was fixed at 63.5 cm.

In [75], the eye gaze data of 250 participants watching 85 different videos were recorded.

The videos were from different genres such as documentaries, game trailers, movie trailers,

music videos, news clips and time-lapse footage, ranging from 27 to 217 seconds in length.

In total, there were about 78,167 frames across all videos in this dataset. Participants’ eye

movements were tracked binocularly using an SR Research Eyelink 2000 desktop-mounted

eye tracker with a sampling frequency of 1 KHz for each eye. Videos were displayed in
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random order in their native resolutions on a 2100 Viewsonic Monitor with desktop reso-

lution 1280 × 960 at 120 Hz at a viewing distance of 90 cm. Additional publicly-available

eye-tracking datasets can be found in [76].

As seen above, although several eye-tracking datasets for video exist in the public do-

main, none of them has been made for “standard” video sequences that are familiar to

video processing and compression research community, and are often used to evaluate new

algorithms. This was our motivation to develop an eye-tracking dataset for “standard”

sequences, such as Foreman, Flower Garden, etc.

3.2 Our database

3.2.1 Video sequences

To generate the eye-tracking data, we used the following 12 standard video sequences:

Foreman (300 frames), Bus (150 frames), City (300 frames), Crew (300 frames), Flower

Garden (250 frames), Mother and Daughter (300 frames), Soccer (300 frames), Stefan (90

frames), Mobile Calendar (300 frames), Harbor (300 frames), and Tempete (260 frames).

The sequences were stored in YUV 4:2:0 format at CIF (352×288) resolution, and 30 frames

per second (fps). These sequences were selected based on the fact that they are frequently

used to test video compression, processing, and transmission algorithms. We believe that

eye-tracking data for these sequences will facilitate the development and testing of novel

perceptually-motivated video processing algorithms.

3.2.2 Eye tracker

To collect the eye-tracking data, we utilized a a Locarna “Pt-Mini” eye-tracker [77]. This

eye tracker is head-mounted (using lightweight eye glasses) and allows subjects to move

their head naturally. The eye tracker has two cameras, one pointing towards the subject’s

eye (“eye camera” of resolution 320 × 240), the other pointing forwards (“scene camera”

of resolution 720 × 480). Both cameras operate at 30 fps. Fig. 3.1 shows a picture of the

Locarna eye tracker.

To track the movement of the head relative to the screen, two red dots of radius 1 cm

were placed in the left and right bottom corners of the screen. Tracking of these two dots

in the scene camera view made it possible to compensate for the head movement and map
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Figure 3.1: A photo of the Locarna eye tracker.

Figure 3.2: A photo of the eye-tracking setup.
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the gaze locations onto the screen using a homographic transformation, without a head

tracker. Given our experimental setup, subjects did not need to move their head much and

further they remained at a fixed distance from the screen (80 cm) which allowed for a more

precise mapping of the gaze data back onto the screen plane. Fig. 3.2 shows a picture of

our experimental setup.

The advertised accuracy of the Locarna eye tracker is 1◦ or better in the field of view,

which is the same as the advertised accuracy of other eye trackers on the market (e.g.,

Tobii, faceLAB, etc.). To verify this, we measured the accuracy of Locarna’s eye tracker

on 10 subjects. Out of these 10 subjects, 4 persons were wearing contact lenses, and the

other 6 persons had normal vision. The subjects were graduate students in the School of

Engineering Science at Simon Fraser University.

Each subject was seated in front of a 19′′ Samsung SyncMaster 915N color monitor at

a distance of 80 cm. The monitor resolution was set to 800 × 600, with vertical frequency

of 75 Hz and horizontal frequency of 46.875 kHz. Other options were set to their factory

default values. We first displayed the nine blue calibration dots shown in Fig. 3.3 on the

monitor to calibrate the eye tracker. In the calibration procedure, the subject is instructed

to fixate on the center of each of the nine dots in sequence: dot 1, dot 2, ..., dot 9. Each

fixation was triggered by a vocal sound instructing the subject to look at the next dot.

After each fixation, the two images captured by the scene camera and the eye camera were

recorded for further processing. At the end of the calibration procedure, we obtained nine

sets of coordinates in the real-world scene (the centers of the nine blue dots), and nine pupil

locations. A manual inspection was then performed to make sure that the obtained center

locations are correct and accurate. Finally, the obtained coordinates were used to compute

the calibration matrix using a typical 8-point perspective projection and Singular Value

Decomposition (SVD).

To test the eye tracker accuracy, we asked the subjects to fixate at each of the 12 red

test dots shown in Fig. 3.4 for about one second, starting with the dot labeled “A,” then

moving to dot labeled “B” and so on up to dot labeled “L.” The radius of the dots was 32

pixels. The relative position of the red test dots with respect to the blue calibration dots is

shown in Fig. 3.5. As seen in Fig. 3.5, the test dots are positioned in between the calibration

dots. The goal of this first test was to examine the accuracy of the eye tracker immediately

after the calibration.

After the first test, we displayed a video (Stefan, CIF resolution) at the center of the
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Figure 3.3: The dot pattern used for calibration.

Figure 3.4: The dot pattern used for testing.
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Figure 3.5: The relative position of the test dots with respect to the calibration dots.

screen for about 7 seconds. The subjects were instructed to look wherever they wish in

the video during this time. After they were shown the video clip, the accuracy test was

repeated on the red dot pattern shown in Fig. 3.4. The subjects were again asked to look at

the test dots in sequence, starting with the dot labeled “A,” down to the dot labeled “L.”

The goal of this second test was to examine the accuracy of the eye tracker some time after

the calibration.

In order to measure the accuracy of the eye tracker, we first isolated those frames that

recorded the fixation. These were the frames where the point of gaze did not move by more

than n pixels inm consecutive frames. In other words, in a fixation group of frames, the gaze

point is allowed to move by at most n pixels in m consecutive frames. In our experiments,

we set n = 50 pixels and m = 7 frames. There were 6770 fixation frames in total, hence, on

average, 677 per subject.

We then computed the Euclidean distance between the center of each test dot and the

gaze location provided by the eye tracker in each frame of the corresponding fixation group.

The computed distances were considered as the measurement errors in estimating the gaze

location by the eye tracker. The obtained measurement errors are reported in Tables 3.1-3.3.
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Table 3.1: Measurement error on all ten subjects.

Mean Standard Deviation

16.56 pixels (0.45◦) 13.36 pixels (0.36◦)

Table 3.2: Measurement error on subjects with/without contact lenses.

Subjects Mean Standard Deviation

without contact lenses 15.61 pixels (0.42◦) 11.25 pixels (0.30◦)
with contact lenses 18.78 pixels (0.51◦) 16.86 pixels (0.45◦)

Difference 3.17 pixels (0.08◦) 5.61 pixels (0.15◦)

As seen in the tables, the average measured errors were under 0.5◦ of visual angle.

To check whether wearing contact lenses makes a difference to the accuracy, we performed

a t-test [78] on the measurement errors with and without contact lenses in Table 3.2. The

null-hypothesis was that the errors come from distributions with the same mean but unequal

variance. The two-tailed p-value in this case was 9.3543 × 10−5, indicating that the null-

hypothesis needs to be rejected, and that the errors do come from distributions with different

means. A similar test was performed for the two cases in Table 3.3 (before and after watching

the video clip). The p-value was 7.8772× 10−5 in this case, again indicating that the errors

come from distributions with different means.

Based on the obtained results, the measurement error in the case of contact lenses tends

to be higher than the error without lenses. However, the difference in the mean error in the

two cases is very small, less than 0.1◦. Fig. 3.6 shows two samples of the pupil detected by

Locarna’s eye tracker when using a hard contact lens. These two samples were extracted

from a 1.5 hour video recorded by Locarna’s eye tracker. As seen from these two samples,

the pupil has been detected correctly.

Table 3.3: Measurement error before and after watching the video clip.

Viewing Mean Standard Deviation

before watching the video clip 15.63 pixels (0.42◦) 13.24 pixels (0.35◦)
after watching the video clip 18.25 pixels (0.49◦) 13.16 pixels (0.35◦)

Difference 2.62 pixels (0.07◦) 0.08 pixels (0.00◦)
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Figure 3.6: Two samples of the pupil detected by Locarna’s eyetracker when using a hard
contact lens.

We also note that the measurement error was higher on the second test (after watching

the video clip) than on the first test, but again the difference in the mean error was very

small, less than 0.1◦. Overall, the mean measurement errors were around 0.5◦, well below

the advertised accuracy of the Locarna eye tracker of 1◦. Even the mean error plus one

standard deviation of the error was less than the advertised accuracy.

We uploaded a sample video of the performed experiment at the following online link

at YouTube: http://www.youtube.com/watch?v=lOL38F2VBFE. This video shows the ac-

curacy of the eye tracker on a subject wearing contact lenses with a mean error of about

0.5◦ of visual angle, which was roughly the mean error on the subjects with contact lenses.

The video shows the measured gaze point with a cross-hair, along with two concentric cir-

cles. The smaller circle has a diameter of 1◦ (i.e., radius of 0.5◦), and the larger circle has

a diameter of 2◦ (radius of 1◦). Overall, the tests confirmed the accuracy of the Locarna

eye-tracker. This testing represents one of the unique features of our dataset. Most other

datasets simply quote the advertised accuracy of their eye tracker, without really putting it

to test.

3.2.3 Eye-tracking data collection

A total of 15 non-expert participants (2 women and 13 men) took part in the eye-tracking

data collection study. They were recruited by a mass e-mail invitation and were paid

$15 for their participation. All of them had normal or corrected-to-normal vision, and

were asked to wear a Locarna “Pt-Mini” head mounted eye tracker [77] to determine their

gaze direction. The participants consisted of undergraduate and graduate Simon Fraser

University students aged between 18 and 30. None of the participants wore spectacles. The

http://www.youtube.com/watch?v=lOL38F2VBFE
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pupil images captured by the eye camera were analyzed (in real time) by specific image

processing techniques implemented in the eye tracker’s software in order to find the exact

location of the pupil center.

In order to map the location of the pupil to the real-world scene (i.e., scene camera

view), a calibration matrix, obtained using the 9-dot calibration procedure described in

Section 3.2.2, was used. In order to verify that the eye tracker remained calibrated through-

out the duration of the experiment, a small crosshair was displayed on a blank screen

after presenting each video clip, and the subjects were asked to fixate on the center of the

crosshair. Any deviation from the true location was used as an out-of-calibration indicator.

This allowed us to recalibrate the system in case of any miss-calibration.

The study was performed one participant at a time over a period of two days in June

2010. The experiment was run in a quiet room with an ambient light of 200 Lux, as

recommended in [79] to simulate a “home environment.” Each participant was seated in

front of a 19′′ Samsung SyncMaster 915N color monitor at a distance of 80 cm, and watched

a video with pre-recorded instructions on how to complete the experiment before getting

started. The monitor resolution was set to 800× 600, with vertical frequency of 75 Hz and

horizontal frequency of 46.875 kHz. Other options were set to their factory default values.

The video clips were shown on the screen at twice their normal size so that they would

occupy approximately 84% of the screen. The actual size of the video frames was about 40◦

of the visual angle. The video resolution was increased using nearest neighbor interpolation.

This did not create visible artifacts at the viewing distance of 80 cm.

The 12 short video sequences were presented sequentially in a fixed order with a 3

second pause in-between. During this pause and before the beginning of each video, a small

crosshair (centered on the video display area) was presented and the participants were asked

to fixate on it. After the 12 videos had been presented, participants then had a 2-minute

break after which the 12 videos were presented again. The participants were asked to look

naturally at the videos and were not given any instructions as to what to look for in the

sequences.

3.2.4 Gaze data visualization

The collected raw gaze data was analyzed, mapped from the head mounted eye tracker

onto the video plane and stored in a comma separated value (CSV) file format. This file

contains the frame-by-frame, pixel wise x- and y-coordinates (measured from the bottom
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left corner) of the gaze location for each participant and each of the video sequences. All

the obtained gaze data were inspected both manually and automatically to ensure that they

are fairly reliable. Each gaze location stored in the mentioned CSV files was flagged as

either correct (flag = 1) or incorrect (flag = 0) in a separate CSV mask file. The gaze data

were also represented in two different visualizations for each video sequence: a moving heat

map and a gaze plot comparing participants’ first and second viewing of the sequences. In

the heat map visualization (Fig. 3.7), the areas of the video that received the most visual

attention are presented in white, followed by red, yellow green and blue as visual attention

dropped. The heat maps were generated from the valid raw gaze location points collected

for all participants based on the characteristics of the fovea. In each frame, we create a

circular area with values following a Gaussian distribution around the gaze location of each

participant. This Gaussian models the non-uniform distribution of the photoreceptors on

the retina (i.e., the eccentricity of the fovea). The width of the Gaussian was set to 2 degrees

of visual angle, which translates to 64 pixels in our case. The accumulation of the obtained

Gaussian values resulted in the heat map for that frame. In the gaze plot visualization (Fig.

3.8), a pair of connected circles represent where each participant looked at the sequences

the first and second time they were presented to them. Each participant’s gaze location for

the first and second view is represented in a different color. This data was collected in an

effort to determine if a person who had just seen a particular video, and was thus familiar

with it, would look at the same locations when viewing it a second time.

3.2.5 Database location, structure and accessibility

The database is available online at the following URL: www.sfu.ca/~ibajic/datasets.html.

Each of the 12 video sequences is stored in a separate folder that contains the following:

• Original uncompressed sequences in YUV 4:2:0 format.

• Heat map visualization (-heatmap) video clips in compressed AVI format, similar to

Fig. 3.7.

• First and second view visualization (-1vs2) video clips in compressed AVI format,

similar to Fig. 3.8.

• A CSV file containing the x- and y-coordinates for each participant’s first and second

viewing for each frame of each video sequence.

www.sfu.ca/~ibajic/datasets.html
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Figure 3.7: Heat map visualization of City for the first viewing.

Figure 3.8: Gaze plot visualization comparing first and second viewing of City.
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Table 3.4: Average distance between gaze locations in the first and second viewing.

Sequence Average Distance
Pixels % of diagonal

Bus 91.52 20.12
City 72.35 15.91
Crew 99.23 21.82

Foreman 46.18 10.15
Flower Garden 92.74 20.39
Hall Monitor 67.62 14.87

Harbor 78.27 17.21
Mobile Calendar 145.95 32.09

Mother & Daughter 70.03 15.40
Soccer 82.62 18.17
Stefan 41.38 9.10
Tempete 65.60 14.42

• A CSV file containing the binary flag matrix (-Mask) for each frame of each video

sequence.

• A number of MATLAB functions to generate and visualize the heat maps and gaze

data, as well as a user manual for the code.

• A brochure for the employed eye tracker (Pt-Mini), and a number of whitepapers and

technical papers, which are also accessible at http://www.locarna.com/docs/.

3.3 Results

3.3.1 Congruency of first vs. second viewing

It is natural to ask whether people who view a particular video multiple times look at the

same locations each time they view it. We hypothesized that this would not always be

the case. In other words, we expect that in many cases people would tend to shift their

gaze to different locations each time they view a particular video clip. We thus collected

gaze location data for two sequential viewings of each sequence in our database in order to

corroborate this hypothesis.

The gaze tracking data allowed us to compare where the participants’ gaze was directed

for each of the sequences the first time participants saw them, as well as when they were

http://www.locarna.com/docs/
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viewed a second time. In each frame, there is a gaze location for the first and second

viewing for each participant. Visualizations of the gaze locations for the first and second

viewing (similar to Fig. 3.8) are also made available in the database. As anticipated, there

was a notable difference in the locations of the participants’ gaze for the first and second

viewing. We computed the Euclidean distance between participants’ gaze location on the

first and second viewing, and then averaged those distances across different participants.

The average distance for each of the video sequences is presented in Table 3.4, both in terms

of pixels, and in terms of the percentage of the size of the CIF frame diagonal, which is√
3522 + 2882 = 454.8. As seen in the table, the average distance between the gaze locations

could be as large as a quarter of the frame. Note, however, that the variability between the

first and second viewing is likely to be influenced by the amount of time elapsed between

the two viewings. Our main goal here is to raise awareness among the readers that such

variability may exist, rather than provide an accurate model for such variability.

The shift in gaze locations was particularly evident for sequences such as Crew, Flower

Garden, and Mobile Calendar, where there are numerous objects (none of which are strongly

dominant) that compete for viewer’s attention. Here, the word “dominant” refers to our

subjective impression of what was dominant in a particular sequence or set of frames (e.g.,

the face in the initial part of Foreman). In cases where there was no single dominant object,

the viewers tended to shift their gaze to a different object in the second viewing. On the

other hand, in sequences with a single dominant object of interest, such as City and Stefan,

the differences in gaze locations were related to the size of the object - small object (the

tennis player) in Stefan gave rise to a small difference, while the large object (the central

building) in City gave rise to a large difference. Bear in mind that in these sequences, as in

those with multiple objects of interest, the gaze location did change between the first and

second viewing, but usually remained within the dominant object of interest, as illustrated

in Fig. 3.8.

Certain sequences presented interesting patterns when comparing first and second view-

ing. An example is Foreman, where the distance between gaze locations of the first and

second viewing varied as the sequence progressed (Fig. 3.9). In the beginning of the se-

quence, when there is a face present in the video, gaze was concentrated on this face in both

viewings. Hence, the gaze location difference in this part of the sequence was relatively

small. As the sequence progresses, the camera pans to show a construction site, and there

was a larger disparity between participants’ gaze locations for the first and second viewing,
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Figure 3.9: Average distance (in pixels) between gaze locations in the first and second
viewing for Foreman, presented frame by frame.

because within the construction site, a larger number of regions of similar saliency compete

for viewer’s attention. In Fig. 3.9, we can see a definite trend: gaze distance between first

and second viewing increases as the sequence progresses, and peaks between frames 180-190

when the camera starts to pan to the right. In general, such a behavior depends on the

video content.

3.3.2 Accuracy of two popular visual attention models

One of the possible uses of this database is in testing prediction models of human attention.

To show how this can be done, we utilized the gaze location data to determine the accuracy

of two well-known visual attention prediction models: the Itti-Koch-Niebur (IKN) model

[2], and the Itti-Baldi (IB) model [17], [57], [58]. Using the gaze location data, we were

able to determine how well these two attention prediction models perform on each of the

sequences in the database.

For each frame, both models produce a saliency map s(x, y) that contains a predicted

attention potential value (ranging from 0 to 255) for each pixel. However, they do not

produce the same total saliency in each frame. In other words,
∑
s(x, y) is, in general,

different for the two models. In order to have a fair comparison between the two models,
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we normalized saliency values as follows:

s′(x, y) =
s(x, y)∑
s(x, y)

Npixel, (3.1)

whereNpixel is the number of pixels in the frame. In our case (CIF resolution), Npixel = 352×
288 = 101, 376. After this normalization, both models produce the same total normalized

saliency per frame, i.e.,
∑
s′(x, y) = Npixel for both models.

Using the normalized saliency maps, we proceeded to calculate the accuracy of the

models by adding the normalized values of every pixel where a gaze was directed. If (xi, yi)

is the pixel where i-th viewer’s gaze was directed in a particular frame, the accuracy score

of a model for that frame was computed as

Score =
15∑

i=1

∑

(x,y)

wxi,yi(x, y)s
′(x, y), (3.2)

where i goes from 1 to 15 because there were 15 viewers in our study, and wxi,yi(x, y) is a

2-D isotropic Gaussian function centered at the i-th gaze location (xi, yi),

wxi,yi(x, y) =
1

2πσ2
exp

(
−(x− xi)

2

2σ2
+

(y − yi)
2

2σ2

)
. (3.3)

This Gaussian function models both the non-uniform distribution of the photoreceptors

on the retina, as well as the eye tracker measurement noise. It is assumed isotropic (i.e.,

σ = σx = σy) for convenience, and we set σ = 64 pixels, which corresponds to 2 degrees of

visual angle. The average accuracy scores (over all frames) for each sequence are presented

in Table 3.5, for both the first and second viewing. To examine whether the difference

in the average scores between the IKN model and the IB model is statistically significant,

we performed a paired t-test [78] on the frame-by-frame scores for each sequence and each

viewing. The null-hypothesis was that the scores of both models come from the distributions

with the same mean. Based on the results, the null-hypothesis was rejected (at the 5%

significance level) in both viewings for all sequences. The obtained p-values were less than

10−6, except for Foreman for the first viewing (p = 0.000055), and Mother & Daughter for

the first viewing (p = 0.002416) and the second viewing (p = 0.000027). Therefore, based on

our data, the difference in the average accuracy scores of two models was highly statistically

significant in each case, and the model with the higher average score on a particular sequence

can be considered more accurate on that sequence.
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Table 3.5: Average accuracy score for predicting gaze location in first and second viewings.

Sequence IKN Model [2] IB Model [17]
View-1 View-2 View-1 View-2

Bus 23.50 20.83 15.77 14.94
City 9.12 10.67 13.39 14.61
Crew 19.60 18.95 16.16 16.53

Foreman 28.99 30.01 25.15 24.50
Flower Garden 51.31 48.93 19.35 20.48
Hall Monitor 81.62 83.71 59.35 59.00

Harbor 31.12 36.81 20.73 23.71
Mobile Calendar 44.74 40.21 21.40 21.17

Mother & Daughter 32.63 35.13 29.48 30.96
Soccer 31.19 29.12 23.04 22.62
Stefan 67.42 66.91 51.26 48.69
Tempete 34.33 34.05 28.02 28.80

Several observations can be made from the data in Table 3.5. First, the IKN model [2]

showed better accuracy than the IB model [17] in 11 out of 12 sequences, while the IB model

was more accurate in just one case (City). This finding is somewhat surprising, given that

the IB model is more recent [17] and claimed to be an improvement over the IKN model.

We also ran the t-test to determine if there is any statistical basis for claiming that

a particular model had better accuracy on the first or second viewing. The results were

mixed. At the 5% significance level, the IKN model showed better accuracy on the first

viewing for three sequences (Bus, Mobile Calendar, and Soccer), and on the second viewing

for four sequences (City, Foreman, Harbor, and Mother & Daughter), while for the remain-

ing sequences the difference was not statistically significant. The IB model showed better

accuracy on the first viewing for three sequences (Bus, Foreman, and Stefan), and on the

second viewing for five sequences (City, Flower Garden, Harbor, Mother & Daughter, and

Tempete), while there was no statistically significant difference on other sequences. Overall,

according to this data, both models seem to be roughly equally suitable for first and second

viewing.

While Table 3.5 provides the data to compare the relative accuracy of the two models,

it is natural to ask how accurate these models are in absolute terms. One way to tackle

this question is to compare these models with uniformly spread saliency. Suppose we assign

the same saliency to each pixel, i.e., su(x, y) = 1 for all (x, y). With such uniformly spread

saliency, the total normalized saliency is the same as for the two models above (
∑
su(x, y) =
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Table 3.6: Average accuracy score for the uniformly spread saliency in the first and second
viewing.

Sequence View-1 View-2

Bus 14.55 14.63
City 14.57 14.44
Crew 13.21 13.62

Foreman 14.67 14.66
Flower Garden 14.48 14.55
Hall Monitor 13.48 14.65

Harbor 14.50 13.86
Mobile Calendar 14.26 14.41

Mother & Daughter 14.47 14.73
Soccer 12.91 14.26
Stefan 14.82 13.37
Tempete 14.42 13.79

Npixel), so a fair comparison is possible. The average accuracy scores for such uniformly

spread saliency computed using equation (3.2) are listed in Table 3.6. One could argue

that if a particular model does not produce a score significantly above that listed in Table

3.6, it really isn’t any more accurate than uniformly spread saliency. Again, we used the

t-test to assess whether a particular model’s score was significantly better (or worse) than

that produced by uniform saliency. The IKN model’s score on City was significantly lower

than that produced by uniform saliency on both views of City, and significantly better in

all other cases. Meanwhile, the IB model’s score was significantly lower than that produced

by uniform saliency on the first view of City, while there was no significant difference on

the second view of Bus and City. In all other cases, the IB model had a significantly

higher accuracy than uniform saliency. Overall, the scores were the highest (and the models

were most accurate) on sequences with few dominant moving objects, such as Stefan and

Hall Monitor, whereas both models showed lower accuracy on sequences where there were

multiple objects competing for viewers’ attention. One perhaps surprising finding was that

both models had a problem with the sequence City, which contains a single large dominant

object (the central building). A possible reason may be that this dominant object has

a similar color and texture distribution as the background, and appears relatively static

relative to the background as the camera revolves around it, so it is not being picked up by

the contrast analysis modules employed by both models.

For completeness, we also compared the accuracy of the two models using the popular
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receiver operating characteristic (ROC) area under curve (AUC) measure [80],[81],[82]. In

order to compute the AUC score for a saliency map, the hit rate is computed by determining

the locations where the saliency map is above a certain threshold and a fixation is present in

those regions. Similarly, the false alarm rate is computed by finding the locations where the

saliency values are above the threshold while there is no fixation present in those regions.

The ROC curve is then generated by varying the threshold to cover a wide range of possible

saliency values. The area under the ROC curve is the AUC score. An AUC value of 0.5

corresponds to pure chance, a value greater than 0.5 indicates positive correlation, and 1.0

corresponds to a perfect prediction of eye fixations [80].

The mean AUC scores of the two models for each viewing are shown in Table 3.7. To

check for the statistical difference between the mean AUC scores of the two models, we

performed a t-test with the null hypothesis that the mean AUC scores of the two models

come from Gaussian distributions with equal means. The resultant p-values are also reported

in this table. As seen from the results in this table, the IKN model outperforms the IB model

in 8 out of 12 cases on the first viewing, and in 6 out of 12 cases on the second viewing.

We also note that the performance of the two models is statistically the same on Mother

& Daughter on both viewings, since the p-value is larger than 0.05. In all other cases, the

corresponding p-values are below 0.05, which means that one of the methods obtained a

statistically significant advantage in the average score. We also observe that the accuracy

of the two models on City is around the chance level in both viewings, a result that was

previously observed in Table 3.5. Fig. 3.10 shows the average ROC curve of the two models

(across all the 12 sequences) for both viewings. As seen from these results, the average

accuracy of the IKN model is better than the IB model across all the tested sequences.

More specifically, in the first viewing, the average AUC score of the IKN model is about

0.6586 while the average AUC score of the IB model is about 0.6447 with a p-value of

0.022343. In the second viewing, the average AUC score of the IKN model is about 0.6599

while the average AUC score of the IB model is about 0.6561 with a p-value of 0.037517.

3.4 Conclusions

As video compression and processing algorithms evolve to incorporate models of human per-

ception and attention, it becomes imperative to have the tools to test them. In this chapter
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Table 3.7: Average AUC score for predicting gaze location in first and second viewing.

Sequence View-1 View-2
IKN IB p-value IKN IB p-value

Bus 0.621949 0.556842 0.000000 0.594323 0.526464 0.000000
City 0.465959 0.518376 0.000000 0.468320 0.521248 0.000000
Crew 0.589822 0.573459 0.004724 0.558933 0.577167 0.000439

Foreman 0.651316 0.615346 0.000000 0.673088 0.637185 0.000000
Flower Garden 0.641450 0.572421 0.000000 0.645224 0.585146 0.000000
Hall Monitor 0.818588 0.803635 0.000002 0.814053 0.798362 0.000002

Harbor 0.603295 0.552790 0.000000 0.641240 0.606229 0.000000
Mobile Calendar 0.662766 0.665117 0.658195 0.675020 0.668334 0.203678

Mother & Daughter 0.662984 0.747836 0.000000 0.669394 0.772578 0.000000
Soccer 0.724149 0.657288 0.000000 0.691267 0.631822 0.000000
Stefan 0.786270 0.812734 0.000059 0.806129 0.839072 0.000007
Tempete 0.674131 0.660761 0.002250 0.682309 0.709505 0.000000

we presented an eye-tracking database for a set of 12 standard CIF video sequences com-

monly used in the literature to compare video compression and processing algorithms. The

database itself is available for public download at www.sfu.ca/~ibajic/datasets.html.

We have described the procedure followed in order to produce this database, and also pre-

sented a preliminary analysis of the obtained data. An interesting finding stemming from the

data is that gaze locations tend to be different in different viewings of the same video, which

may have implications in the design of compression algorithms intended for one-time viewing

(e.g., videoconference), compared to those intended for multiple viewings (e.g., DVD and

Blu-ray). We also showed how the data can be used to compare models of visual attention in

terms of their accuracy in predicting gaze locations. The eye-tracking data provided in this

database can also be utilized for measuring the subjective quality of videos. For instance,

the eye-tracking heat maps of the videos can be employed as a weight map to compute an

Eye-tracking-Weighted Peak Signal to Noise Ratio (EWPSNR) [72]. Using this approach,

the PSNR values in fixation regions get a higher weight than the rest of the frame. This

makes the conventional PSNR more relevant for measuring the subjective quality of videos.

The MATLAB code for computing the EWPSNR metric is also available in the database.

It is worth pointing out that EWPSNR is similar to the Foveal Weighted SNR (FWSNR)

metric proposed in [83]. However, unlike FWSNR, EWPSNR uses the actual gaze point

measurements to weight the MSE distortion.

Some of the limitations of the database include the accuracy of the data, which is limited

www.sfu.ca/~ibajic/datasets.html
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Figure 3.10: Average ROC curves of the IKN and IB models for the first viewing (left) and
second viewing (right). The dashed diagonal line in the two figures shows an AUC score of
0.5, corresponding to pure chance.

to about 1◦ in the field of view by the eye-tracking equipment and setup, and the number

of video sequences and participants, both of which should ideally be as high as possible.

Further, the distances between participants’ gaze locations in the first and second viewing

should be taken with a grain of salt, since they likely depend on the amount of time elapsed

between the viewings. Our data is intended mainly to raise awareness that such variability

may exist. Nonetheless, despite these limitations, we hope the data will be useful to the

research community.



Chapter 4

Computationally-Efficient Saliency

Estimation

4.1 Background

As mentioned in Chapter 2, the Itti-Koch-Niebur (IKN) saliency model [2] is one of the

most well-known and widely-used bottom-up models of visual attention. However, this

model is very complex as it requires multiresolution analysis of the input image or video in

the pixel domain in various feature channels such as intensity, color, orientation, flicker, and

motion. Hence, the high computational complexity of the IKN model limits its applications,

especially in real-time scenarios, where fast saliency estimation is required.

In this chapter, we present two computationally-efficient saliency estimation methods.

The first one is a convex approximation to the IKN model for both static images and video,

which operates solely in the Discrete Cosine Transform (DCT) domain. The computational

cost of this approximation is only a fraction of that of the IKN model, while at the same

time, its accuracy is very close to the that of the IKN model. The lower computational

cost is due to the fact that our approximation does not require multiresolution analysis as

it operates in the DCT domain in which different DCT coefficients carry the information

from different resolution levels. Many image and video processing systems (e.g., codecs)

incorporate DCT. Hence, DCT information is often available at no extra computational

cost, and it makes good engineering sense to reuse it. In addition to the lower computational

cost, the convexity of our approximation makes it attractive to incorporate within various

44
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optimization procedures in image and video processing. One example is given in Chapter 6,

where this approximation is used to make a saliency-cognizant error concealment problem

convex, which in turn leads to an efficient solution.

It is worth pointing out that in [84], a saliency detection method for static images in

the JPEG compressed domain was proposed. In this method, several features such as the

intensity, color, and texture information are first extracted from the DCT coefficients of

each 8×8 block in the image. For example, the DC values of the luma and chroma channels

are converted to the RGB color space so that the intensity and color opponent features

(i.e., blue-yellow and red-green) can be computed for each block. The AC coefficients of

each block are also used to extract the orientation or texture information of each block.

This gives a texture feature vector per each 8 × 8 block. In the end, four feature maps

are created: one intensity, two color opponent features, and one texture feature. The next

step in this method is to compute the feature difference between the feature values of each

pair of blocks in each feature map. To measure the feature difference in the intensity and

color opponent channels, the feature values are directly subtracted from each other while

a Hausdorff distance [84] is used to measure the dissimilarity between two texture feature

vectors in the texture feature map. The saliency value for each DCT block in each feature

map is then determined by the block differences between each DCT block and all other

DCT blocks of the input image. The block differences are also weighted by a Gaussian

function of the Euclidean distance so that spatially-closer blocks have more contribution to

the saliency value of each block. This step gives a conspicuity map for each feature map.

The final saliency map is then computed by combining all the computed conspicuity maps

using a specific fusion method [84].

Although the method from [84] works in the DCT domain, it is different from our pro-

posed approximation to the IKN model in several aspects. First, unlike [84], our method

attempts to approximate the well-known IKN saliency, rather than provide a saliency es-

timate based on some other principles. Second, our method offers an estimate of saliency

that is convex in the input data, which makes it attractive for use in various optimization

problems. Third, the computational complexity of our method appears to be lower than

that of [84], since our method simply sums up the weighted squared magnitudes of the DCT

coefficients of individual image blocks, whereas the method in [84] involves computing and

combining several feature maps over the entire image.

The second saliency estimation method presented in this chapter is an extension of the
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abovementioned convex approximation to IKN saliency. The main difference is in the part

that estimates motion-induced saliency, where we incorporate global motion compensation

(GMC) [14] prior to saliency estimation. Although this second method is not convex in

the input data and is more complex than the first method, it is still simpler than the IKN

saliency model and offers comparable accuracy, somewhat higher on sequences with camera

motion.

This chapter is organized as follows. In Section 4.2, we present our convex approximation

to the IKN saliency model. We then present the second saliency estimation method based

on GMC in Section 4.3. The results are presented in Section 4.4. We provide an analysis

of the computational complexity of the proposed saliency detection methods in Section 4.5,

and conclusions are drawn in Section 4.6.

4.2 A convex approximation to IKN saliency

Our convex approximation to the IKN saliency consists of two parts: spatial and temporal.

Let X be a block within a given frame. We will show how to compute an approximation

S(X) to the IKN saliency of that block.

The dyadic Gaussian pyramid employed in the IKN model approximately halves the

normalized frequency spectrum of the input image at each level due to the successive low-

pass filtering. Since the normalized frequency (in radians/pixel) of the original image at level

0 is [0, π] in both horizontal and vertical directions, the normalized frequency spectrum at

level c of the pyramid is in the range [0, π/2c]. Hence, the normalized frequency spectrum

at levels 4 and 8 will be, respectively, in the range [0, π/16] and [0, π/256]. As mentioned in

Section 2.2.1, in the IKN model, a center-surround feature map at center level c ∈ {2, 3, 4}
and surround level s = c+δ, with δ ∈ {3, 4}, is computed by interpolating the surround level

to the center level followed by point-by-point subtraction. Hence, the normalized frequency

spectrum of the center-surround feature map at center level c and surround level s will be,

in the range [π/2s, π/2c]. To compute the conspicuity map of each feature channel, all the

computed center-surround feature maps are resized to the size of level 4. Hence, the upper

limit of the normalized frequency spectrum of the obtained conspicuity map is capped by

π/16. Since the smallest surround map is at level 8, we conclude that the IKN model uses

the image content in the normalized frequency range [π/256, π/16] to construct the saliency

map, as already observed in [1, 85]. Note that the normalized frequency (in radians/pixel)
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is defined with respect to the original image, regardless of the resolution.

To compute spatial saliency, we need a way to use the pixels of a given block X to

estimate the saliency of the original image at that position. Based on the discussion above,

it seems natural to try to recapture the portion of the image signal from the normalized

frequency range [π/256, π/16] at the position of the block X. However, the process of

extracting a block from an image involves windowing and spectral down-sampling, which

leads to spectral leakage. Some energy from the normalized frequency range [π/256, π/16]

of the original image will be present at other frequencies when one examines the spectrum

of the block X.

To demonstrate the effect of spectral leakage, consider a simple 1-D example shown in

Fig. 4.1. The red signal in this figure shows the 1-D DCT of a pure first harmonic signal of

length 16, which is defined as follows

x[n] = cos(
2πn

16
), (4.1)

for n = 0, 1, · · · , 15. We will extract a segment of length 8 from the middle part of this

signal as follows. We first multiply the signal by a rectangular window of length 8, centered

in the middle of the signal; the 1-D DCT at this point is shown as green in the figure.

Then we remove the zeros outside the interval where the window function is equal to one;

the 1-D DCT of the resulting signal is shown as blue. Note that the signal energy, which

was originally concentrated in only one DCT coefficient, has now leaked into certain higher

frequency coefficients (coefficients 3, 5 and 7). However, since the ratio of the length of the

original signal and the length of the extracted segment is an integer (16/8 = 2), no energy

has leaked into the DC coefficient (coefficient 0).

Fig. 4.2 shows another example in which the original signal length is 16 but the extracted

segment length is 7. Here, due to the non-integer ratio between the original signal length

and the extracted segment length, some energy leaks into the DC coefficient as well. Hence,

depending on the ratio between the signal size and the block size, original signal energy may

or may not leak into certain DCT coefficients.

In order to address this issue we take the following approach. Consider the original

image spectrum in the normalized frequency range [0, π]. We think of the image signal in

the normalized frequency range [π/256, π/16] as the “signal,” and the signal in the remain-

ing part of the spectrum, [0, π/256) ∪ (π/16, π], as “noise,” or “undesired signal.” After

extracting a block from the image, both the signal and the noise leak from their native
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Figure 4.1: A simple example showing the effect of spectral leakage. In this example, the
original signal is of length 16 while the extracted block is of length 8.
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Figure 4.2: A simple example showing the effect of spectral leakage. In this example, the
original signal is of length 16 while the extracted block is of length 7.
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frequency bands into other bands. The spectrum of the block X is the sum of the leaked

spectra of the signal and the noise. We need to extract the signal from noise. Since the

signal and the noise come from non-overlapping frequency bands in the original image, they

are orthogonal. The Wiener filter is the optimum linear filter for extracting the signal from

noise, and when the signal and noise are orthogonal, its transfer function is [86]

H(ω) =
SS(ω)

SS(ω) + SV (ω)
, (4.2)

where SS(ω) is the power spectral density of the signal, and SV (ω) is the power spectral

density of the noise. Hence, the Wiener filter is a frequency-domain weighting function [87].

We performWiener filtering in the DCT domain, rather than DFT domain, because DCT

is simpler to compute (no need for complex arithmetic) and its efficient implementations are

readily available in various image and video codecs. Let ZX(j, l) be the (j, l)-th 2-D DCT

coefficient of X, which is computed as follows

ZX(j, l) =
1

4
CjCl

Nb−1∑

y=0

Nb−1∑

x=0

X(y, x) cos

(
jπ

2y + 1

2Nb

)
cos

(
iπ

2x+ 1

2Nb

)
, (4.3)

where Nb is the width (and height) of X, X(y, x) is the (y, x)-th element of X, and

Cu =





1√
2

if u = 0

1 else,
(4.4)

with u ∈ {j, l}. The Wiener-filtered coefficient is

ZW
X (j, l) = H(j, l)ZX(j, l), (4.5)

where H(j, l) is a coefficient that should be computed as in (4.2) based on signal and noise

powers at the (j, l)-th 2-D DCT coefficient. A common way to design a Wiener filter is

to postulate certain signal and noise models, and derive the filter from the resulting power

spectral densities [88]. We use the 1/f -model, which is thought to be an excellent model

for natural images [89], as a starting point; our “signal” is the part of the 1/f signal in the

frequency band [π/256, π/16], and our “noise” is the part of the 1/f signal in the remainder

of the spectrum.

To compute H(j, l), we proceed as follows. We generate a deterministic 1/f 2-D signal

that covers the frequency band [π/256, π/16], at a size equal to the target image resolution.



CHAPTER 4. COMPUTATIONALLY-EFFICIENT SALIENCY ESTIMATION 50

0

2

4

6

8

10

12

14

16

0

5

10

15

20

0

0.2

0.4

0.6

0.8

l

Resolution = 352x288

j

H
(j,

l)

(a)

0

2

4

6

8

10

12

14

16

0

5

10

15

20

0

0.2

0.4

0.6

0.8

l

Resolution = 1024x768

j

H
(j,

l)

(b)

Figure 4.3: Wiener coefficients for a 16× 16 block for two common resolutions.

We then extract from this signal a block whose size is equal to the block size of interest and

perform a 2-D DCT on it. Let us denote the resulting DCT by ZS(i, j). Then ZS
2(i, j)

is the signal power associated with that DCT coefficient, corresponding to SS(ω) in (4.2).

Similarly, we find the noise power associated with DCT coefficient (i, j), ZV
2(i, j) by using

a deterministic 1/f 2-D signal that covers the frequency band [0, π/256) ∪ (π/16, π]. The

DCT-domain Wiener filter coefficients are then given by

H(j, l) =
ZS

2(j, l)

ZS
2(j, l) + ZV

2(j, l)
, (4.6)

Note that H(j, l) depends on image resolution and the block size, due to the way ZS(i, j)

and ZV(i, j) are computed, but can be easily pre-computed for typical resolutions and

block sizes. Fig. 4.3 shows the Wiener coefficients obtained by the proposed method for

two standard resolutions, 352 × 288 and 1024 × 768, and a block size of 16 × 16. Observe

that Wiener coefficients for low frequencies are larger than those for high frequencies, as one

would expect for a signal that came from the normalized frequency band [π/256, π/16] in the

original image. However, due to spectral leakage, some of the higher frequency coefficients

also contain part of the signal, which makes their Wiener coefficients non-zero.

Our approximation to the spatial saliency of block X is the power of the Wiener-filtered
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signal ZW
X , that is

Sspatial(X) =
∑

(j,l)

(ZW
X (j, l))2 =

∑

(j,l)

H2(j, l)ZX
2(j, l). (4.7)

If block X has multiple color channels (e.g., YUV), the power in all channels is added

together. Since DCT is a linear operation, as is Wiener filtering, while squaring is a convex

operation, the saliency estimate Sspatial(X) in (4.7) is convex in X.

As mentioned in the review of the IKN model in Section 2.2.1, the same center-surround

mechanism that is used for the intensity, color, and orientation channels is used for comput-

ing the motion and flicker conspicuity maps. However, in the flicker and motion channels,

the center-surround mechanism is applied on the absolute luminance difference or spatially-

shifted difference between the current frame and the previous frame. Based on this fact, we

now provide a convex approximation to temporal saliency. Let X0 be the co-located block

of X in the previous frame, and let Q = |X−X0| be the residual block obtained by taking

the absolute difference between X and X0. Our approximation to the temporal saliency of

block X is the power of the Wiener-filtered signal ZW
Q , that is

Stemporal(X) =
∑

(j,l)

(ZW
Q (j, l))2 =

∑

(j,l)

H2(j, l)ZQ
2(j, l), (4.8)

where ZQ
2(j, l) is the (j, l)-th 2-D DCT coefficient of Q. Note that Stemporal(X) is convex

in X because Q is convex in X, DCT and Wiener filtering are linear, and squaring is a

convex operation.

In order to get the final saliency estimate of X, we combine the spatial and temporal

saliency terms as follows

S(X) = Sspatial(X) + αStemporal(X), (4.9)

where α is a positive parameter that trades off between the two saliency terms. We note

that S(X) is convex in X because it is a non-negative linear combination of convex terms.

This saliency estimate will be evaluated and compared against the IKN saliency in

Section 4.4.1, where the results will show that (4.9) offers a very good approximation to

IKN saliency. Next, we present the second saliency estimation method, which makes use

of the spatial saliency term from above, but uses global motion compensation prior to

computing motion saliency.



CHAPTER 4. COMPUTATIONALLY-EFFICIENT SALIENCY ESTIMATION 52

4.3 Global motion-compensated saliency

It is well-known that object motion is one of the strongest attractors of visual attention [90],

[91], [55]. In many existing computational models of visual attention, such as the IKN model,

the temporal saliency is estimated by measuring the local motion contrast [67]. An object

with significant motion with respect to its surroundings would be considered as a strong,

attention-grabbing “surprise” to the visual system, and hence salient.

In [92], it was observed that the accuracy of the IKN model degrades on scenes with

camera motion. When the camera moves, the resulting apparent motion of the background

competes with foreground object motion and may confuse the saliency model, leading to

lower accuracy. To mitigate this problem, similar to [55] and [91], we remove the camera

motion prior to computing temporal saliency.

To make the process computationally efficient, particularly for video compression ap-

plications, we use the previous frame’s motion field (which is already computed) as an

approximation to the current frame’s motion field, and run an efficient global motion es-

timation algorithm [14] that uses only motion vectors (MVs), followed by global motion

compensation, i.e. subtraction of global motion from the motion field. This way, we obtain

one global motion-compensated MV (GMC-MV) per 4 × 4 block. For each block X, the

average magnitude of all GMC-MVs in it is taken as its motion saliency Smotion(X).

In order to obtain the overall global motion-compensated saliency Sgmc(X), we combine

the spatial saliency Sspatial(X) from the previous section with the abovementioned motion

saliency using the fusion method from [93], [94], as follows

Sgmc(X) = (1− αg)Sspatial(X) + αgSmotion(X) + βgSspatial(X)Smotion(X), (4.10)

where αg and βg are positive constants. The first two terms in (4.10) allow the spatial

and motion saliency to promote a block independently. On the other hand, the third term

in (4.10) weighs the spatial saliency value by the motion saliency value and vice versa.

Hence, it is a mutual reinforcement term, which promotes those blocks that are salient both

spatially and temporally. As mentioned earlier, it is known that motion cues are one of the

strongest attractors of visual attention [90]. Hence, in practice, a larger relative weight for

the motion saliency (αg > 0.5) is recommended. In our experiments, we set αg = 0.9 and

βg = 1.

Our experimental results in Section 4.4.2 indicate that the performance of the global
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motion-compensated saliency estimate in (4.10) is comparable to the IKN saliency model

for video, even better when camera motion is present in the scene.

4.4 Accuracy

In this section, we first evaluate the accuracy of our convex approximation to IKN saliency in

Section 4.4.1, followed by performance evaluation of the global motion-compensated saliency

estimation method in Section 4.4.2.

4.4.1 Assessment of the convex approximation to IKN saliency

As explained in Section 4.2, our approximation to IKN saliency has two terms: spatial

and temporal. The approximation accuracy of the spatial term (4.7) with block size was

16 × 16 is assessed first on two popular still image datasets with associated ground truth

eye-tracking data (fixation points). The first dataset is the so-called Toronto data set [68],

which contains 120 RGB images (688× 512 pixels) of outdoor and indoor scenes with eye-

tracking data of 20 subjects. The second data set is the so-called MIT data set [69],[82],

which contains 1003 RGB indoor and outdoor images (1024× 768 pixels) with eye-tracking

data of 15 subjects.

The accuracy of spatial saliency detection is measured by the popular receiver operating

characteristic (ROC) area under curve (AUC) measure [80],[81],[82]. In order to compute the

AUC score for a saliency map, the hit rate is computed by determining the locations where

the saliency map is above a threshold and a fixation is present in those regions. Similarly,

the false alarm rate is computed by finding the locations where the saliency values are above

the threshold while there is no fixation present in those regions. The ROC curve is then

generated by varying the threshold to cover a wide range of possible saliency values. The

area under the ROC curve is the AUC score. An AUC value of 0.5 corresponds to pure

chance, a value greater than 0.5 indicates positive correlation, and 1.0 corresponds to a

perfect prediction of eye fixations [80].

Table 4.1 shows the average AUC scores of the spatial IKN model and our approximation

on each of the two datasets. As seen from the table, the average AUC scores of the proposed

approximation are very close to the average AUC scores of the IKN model in each of the

two datasets, indicating good approximation. To check for the statistical significance of this

observation, we performed a paired t-test [95] between the AUC scores on each pair of images
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Table 4.1: Average AUC scores of the spatial IKN saliency and the proposed approximation
on two common datasets.

Dataset IKN Saliency Model Proposed Approximation p-value
Toronto 0.6512 0.6468 0.6233
MIT 0.6261 0.6244 0.6426

in the two datasets, with the null hypothesis that the two samples come from Gaussian

distributions with equal means and unknown variances. The resultant p-values [95] are also

reported in Table 4.1. In experimental sciences, as a rule of thumb, the null hypothesis

is rejected when p < 0.05. As seen from Table 4.1, the p-value for both data sets is well

above 0.05, which indicates that the two sets of AUC scores are statistically very similar,

i.e., virtually indistinguishable.

To further compare the saliency maps produced by the proposed spatial approximation

(4.7) with those produced by the original IKN model, we employed the Kullback-Leibler

Divergence (KLD) [62]. For this purpose, we first normalized each saliency map so that it

sums up to 1, and then considered the normalized map as a 2-D probability distribution.

We then computed the average symmetric KLD between the two sets of normalized maps

on both datasets. The symmetric KLD between two probability density functions p1(x) and

p2(x) is defined as

KLDsym(p1(x)||p2(x)) =
1

2
(KLD(p1(x)||p2(x)) +KLD(p2(x)||p1(x))), (4.11)

where KLD(p1(x)||p2(x)) is the KLD between p1(x) and p2(x).

The average symmetric KLD on the Toronto data set was 0.01630, and it was 0.01355 on

the MIT data set. Averaging these two, taking into account the number of images in each,

the overall average symmetric KLD between the IKN saliency maps and our approximation

was 0.0138.

In order to get a feeling for what symmetric KLD of 0.0138 between saliency maps

means, we performed an experiment using JPEG coding and compared IKN saliency maps

of the original and encoded images. For this purpose, we compressed the images in the two

datasets with a JPEG encoder at various quality factors, and for each quality factor, we

computed the average symmetric KLD between the normalized IKN saliency maps of the

original images and the normalized IKN saliency maps of the compressed images. We also

computed the average PSNR for each quality factor. We then repeated this experiment
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until we got an average symmetric KLD of 0.0138. At this KLD, the average PSNR was

about 40.2 dB. Therefore, one can say that the loss in accuracy in our approximation for

spatial IKN saliency is comparable to that incurred in high-quality image compression that

results in a PSNR of about 40.2 dB. Fig. 4.4 shows several sample images from the Toronto

data set, their IKN saliency maps, as well as the saliency maps generated by the proposed

spatial saliency approximation.

As a further illustration, we repeated the above experiment with a “naive” spatial

saliency approximation that uses only five DCT coefficients

(j, l) ∈ {(0, 1), (0, 2), (1, 1), (1, 0), (2, 0)}

and sets their weight to 1 in (4.7), while setting the weight of other coefficients to zero. These

coefficients correspond to the normalized frequency band [π/256, π/16] of a 16 × 16 block.

As shown in Fig. 4.3, these coefficients do end up with some of the highest Wiener weights,

but this approach ignores spectral leakage, which is why we call it “naive.” This “naive”

method produces saliency maps with an average KLD of 0.0165 with respect to IKN maps,

over the two datasets. Using the JPEG coding analogy above, the average KLD of 0.0165

corresponds to compression at 38.5 dB. Hence, although not as good as the Wiener-based

approach, this “naive” method still performs reasonably well in terms of spatial saliency

approximation.

We next assess the temporal saliency approximation together with spatial saliency ap-

proximation in the context of saliency estimation in video. Our complete approximation

(the combination of temporal and spatial approximation) will henceforth be referred to as

“IKN-A.” In this test, the benchmark is the IKN model outfitted by a flicker and motion

channel [67]. Table 4.2 compares the spatial IKN saliency against the approximation in

(4.7), the temporal IKN saliency against the approximation in (4.8), as well as the full

IKN saliency (with MaxNorm normalization [2], which we call it “IKN-MA” in the rest of

our analysis) against the combined saliency approximation in (4.9) on ten standard CIF

sequences at 30 frames per second (fps). As seen in the table, the average symmetric KLD

between the spatial IKN saliency and our approximation is 0.0233, which corresponds to

a PSNR of about 36.2 dB using the JPEG coding analogy above. The average symmetric

KLD between the full saliency maps is 0.0174, corresponding to a PSNR of about 38.3 dB,

which is thought to be a fairly decent quality.

Next, we compared the accuracy of IKN-A against IKN-MA using the AUC scores on
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Figure 4.4: Sample images from the Toronto data set (left) along with their IKN saliency
map (middle) and the saliency map generated by the proposed approximation (right).
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the the video sequences from our dataset. The results for both viewings are shown in Table

4.3. As seen from these results, the average AUC scores of IKN-A are close to those of

IKN-MA on both viewings. To check for the statistical significance, we performed a paired

t-test between the AUC scores of the two models, with the null hypothesis that the AUC

scores of the two models come from Gaussian distributions with equal means. The resulting

p-values are also reported in Table 4.3. As seen from this table, for the first viewing, in 6

cases out of 12 cases, the p-values are larger than 0.05, indicating a statistical tie. In other

cases, the accuracy of IKN-A is slightly lower than IKN-MA. The same situation holds for

the second viewing as well. Fig. 4.5 shows the average ROC curves (across all videos) of

the two models for both viewings. For the first viewing, the average AUC score of IKN-MA

across all videos is about 0.6568 while the average AUC score of IKN-A is 0.6463. For the

second viewing, the average AUC score of IKN-MA across all videos is about 0.6621 while

that of IKN-A is 0.6504.

Finally, in addition to the KLD and AUC metrics, we also compared the saliency maps

produced by IKN-MA with the saliency maps produced by IKN-A based on the average

Mean Square Error (MSE). For this purpose, all saliency maps were normalized between 0

and 255, and the average MSE value across all videos was computed. The average MSE

was about 51.53 on the sequences mentioned in Table 4.2, which is equivalent to a PSNR

of about 31 dB.

According to the results reported in this section, we conclude that the accuracy of our

proposed convex approximation to IKN saliency is satisfactory.

4.4.2 Evaluating GMC saliency estimation

In order to evaluate the performance of the global motion-compensated saliency estimation

(GMC-S) from Section 4.3, we compared it against the spatio-temporal IKN model [67]

on the eye-tracking dataset from Chapter 3. To generate the results for the IKN model,

the original implementation of the IKN model [96] was utilized. Note that, as discussed

in [67], in the original implementation of the IKN model for video, two main normalization

operators are available for combining the conspicuity and feature maps: MaxNorm and

FancyOne. MaxNorm yields smoother, more continuous saliency maps, while FancyOne

yields increasingly sparser saliency maps, with only a few sharp peaks [67]. Since the saliency

maps produced by MaxNorm are smoother than those of FancyOne, the MaxNorm operator

is thought to be better suited to video compression [67]. However, FancyOne operator is
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Table 4.2: Average symmetric KLD between the IKN saliency and our approximation on
12 standard CIF sequences.

Sequence Spatial Saliency Temporal Saliency Full Saliency

Bus 0.0163 0.0198 0.0147
City 0.0144 0.0101 0.0115
Crew 0.0107 0.0095 0.0087

Foreman 0.0304 0.0110 0.0189
Flower Garden 0.0138 0.0192 0.0117
Hall Monitor 0.0293 0.0102 0.0189

Mother & Daughter 0.0142 0.0101 0.0120
Harbour 0.0389 0.0103 0.0243

Mobile Calendar 0.0184 0.0151 0.0146
Soccer 0.0162 0.0046 0.0106
Stefan 0.0477 0.0201 0.0301
Tempete 0.0294 0.0315 0.0333

Average 0.0233 0.0143 0.0174

Table 4.3: Average AUC score of IKN-MA and the proposed IKN approximation (IKN-A)
on twelve standard video sequences.

Sequence View-1 View-2
IKN-MA IKN-A p-value IKN-MA IKN-A p-value

Bus 0.677901 0.749948 0.000000 0.642090 0.691229 0.000000
City 0.586142 0.570721 0.065121 0.587870 0.564346 0.128152
Crew 0.651511 0.658493 0.153853 0.655754 0.683478 0.000000

Foreman 0.642199 0.629129 0.071223 0.654281 0.646405 0.054212
Flower Garden 0.644158 0.628359 0.000000 0.676063 0.624593 0.000000
Hall Monitor 0.804911 0.763408 0.000000 0.816323 0.773894 0.000000

Harbor 0.537696 0.529202 0.082716 0.570529 0.566871 0.192315
Mobile Calendar 0.595226 0.599049 0.497824 0.599554 0.580717 0.238125

Mother & Daughter 0.660234 0.639038 0.000005 0.631714 0.628824 0.000000
Soccer 0.717283 0.684119 0.000000 0.707318 0.674214 0.000000
Stefan 0.716098 0.670241 0.000002 0.752651 0.716653 0.000000
Tempete 0.648412 0.633374 0.056646 0.650889 0.633327 0.338122
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Figure 4.5: Average ROC curves of IKN-MA and the proposed IKN approximation (IKN-A)
for the first viewing (left) and second viewing (right) of the 12 standard sequences in our
eye-tracking dataset. The dashed diagonal line in the two figures shows an AUC score of
0.5, corresponding to pure chance.

more accurate in terms of gaze prediction; in fact, the spatio-temporal IKN model [67] with

FancyOne feature integration is currently the most accurate publicly available gaze predictor

for video, according to [92]. For the sake of simplicity in the rest of our analysis, we call the

IKN model with the MaxNorm operator “IKN-MA,” and the IKN model with FancyOne

“IKN-FA.”

Table 4.4 compares the proposed GMC saliency estimation method (GMC-S) with IKN-

MA in terms of gaze prediction accuracy using the score defined in (3.2) for both viewings

of each of the 12 test sequences. As seen from these results, in all cases the average accu-

racy score of our proposed method is higher than that of IKN-MA. To examine whether

the difference in the average scores between IKN-MA and our method is statistically sig-

nificant, we performed a paired t-test [78] on the frame-by-frame scores for each sequence

and each viewing. The null hypothesis was that the scores of the two models come from

the distributions with the same mean. Based on these results, we observe that the obtained

p-values were less than 2× 10−3, except for Crew for both viewings, where the p-value was

larger than 0.05. This means that in all cases except for Crew, the average accuracy score of

the proposed GMC saliency estimation method was higher than IKN-MA, and these results

were statistically significant due to a very small p-value. However, the average accuracy



CHAPTER 4. COMPUTATIONALLY-EFFICIENT SALIENCY ESTIMATION 60

Table 4.4: Comparing the proposed GMC saliency estimation method (GMC-S) with IKN-
MA.

Video First Viewing Second Viewing

IKN-MA GMC-S p-value Difference IKN-MA GMC-S p-value Difference
Bus 19.18 22.30 0.000006 +3.12 19.35 21.81 0.002081 +2.46
City 15.86 33.05 0.000000 +17.19 16.04 33.77 0.000000 +17.73
Crew 15.66 15.87 0.323377 +0.21 15.93 15.98 0.775784 +0.05

Foreman 20.05 22.71 0.000405 +2.66 19.99 23.67 0.000003 +3.68
Flower Garden 20.69 22.07 0.000000 +1.38 21.48 23.03 0.000000 +1.55
Hall Monitor 30.47 34.12 0.000245 +3.65 32.18 38.92 0.000000 +6.74

Harbor 18.83 21.27 0.001148 +2.44 19.37 22.06 0.000065 +2.69
Mobile Calendar 19.42 26.09 0.000000 +6.67 19.43 28.06 0.000000 +8.63

Mother & Daughter 15.51 16.78 0.000000 +1.27 16.03 17.06 0.000000 +1.03
Soccer 18.81 21.62 0.000000 +2.81 20.20 24.73 0.000000 +4.53
Stefan 21.07 23.97 0.007764 +2.90 18.67 23.05 0.000189 +4.38
Tempete 17.96 21.42 0.000000 +3.46 17.36 20.54 0.000000 +3.18

of the two models was statistically indistinguishable on Crew, at the 5% confidence level.

Based on this data, we can claim that the proposed GMC saliency estimation method is

more accurate than IKN-MA in terms of gaze prediction.

In order to compare the accuracy of our proposed GMC saliency estimation method with

IKN-FA, we utilized the FancyOne normalization operator on all saliency maps produced by

our GMC saliency estimation method. In other words, the saliency of each 16×16 block was

first computed as in (4.10), and then similar to the IKN model, the FancyOne operator was

applied on the resultant saliency maps to generate the final saliency maps for our method.

We then performed the same analysis as in Table 4.4 based on the obtained saliency maps.

The results are reported in Table 4.5. In this table, p-values larger than 0.05 have been

indicated in bold typeset.

According to the results in Table 4.5, we observe that the performance of the proposed

GMC saliency estimation method is statistically the same (at the 5% confidence level) as

IKN-FA on Bus (for both viewings), Crew (for both viewings), Flower Garden (for the

second viewing), Harbor (for both viewings), Stefan (for both viewings), and Tempete (for

the second viewing). In these cases, the null hypothesis cannot be rejected because the

corresponding p-values are larger than 0.05. In all other cases, the proposed GMC saliency

estimation method outperforms IKN-FA except for the first viewing of Flower Garden, and

both viewings of Hall Monitor, Mobile Calendar, and Mother & Daughter. Hence, one

could argue that the proposed GMC saliency estimation method has comparable accuracy

to IKN-FA in terms of gaze prediction.
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Table 4.5: Comparing the proposed GMC saliency estimation method (GMC-S) with IKN-
FA.

Video First Viewing Second Viewing

IKN-FA GMC-S p-value Difference IKN-FA GMC-S p-value Difference
Bus 23.50 21.33 0.161670 −2.17 20.83 19.23 0.365476 −1.6
City 9.12 68.04 0.000000 +58.92 10.67 62.47 0.000000 +51.08
Crew 19.60 20.17 0.598369 +0.57 18.95 18.83 0.891117 −0.12

Foreman 28.99 38.40 0.000000 +9.41 30.01 41.62 0.000000 +11.61
Flower Garden 51.31 44.71 0.000000 −6.60 48.93 47.60 0.371274 −1.33
Hall Monitor 81.62 47.31 0.000000 −34.31 83.71 55.79 0.000000 −27.92

Harbor 31.12 33.14 0.279229 +2.02 36.81 34.29 0.093973 −2.52
Mobile Calendar 44.74 31.55 0.000000 −13.19 40.21 34.46 0.000708 −5.75

Mother & Daughter 32.63 18.60 0.000000 −14.03 35.13 17.84 0.000000 −17.29
Soccer 31.19 39.68 0.000000 +8.49 29.12 40.15 0.000000 +11.03
Stefan 67.42 73.92 0.231836 +6.50 66.91 73.50 0.242396 +6.59
Tempete 34.33 37.18 0.040270 +2.85 34.05 31.70 0.086432 −2.735

The study in [92] has evaluated nine publicly available saliency models on the dataset

described in Chapter 3, which allows us to use the results from [92] in order to see how our

GMC saliency estimation method (GMC-S) and our proposed IKN approximation (IKN-

A) compare against these other models. Besides IKN-FA, the study in [92] included the

following saliency models: Schauerte and Stiefelhagen [97], Harel et al. [38], Achanta and

Susstrunk [85], Itti and Baldi [17], Goferman et al. [98], Fang et al. [99], Seo and Milan-

far [100], and Kim et al. [101], For brevity, these models will henceforth be referred to as

QDCT, GBVS, MSSS, IB, CA, QFTA, SR, WK, respectively.

The methodology employed in [92] was as follows. First, each model was applied to each

of the sequences in the dataset, resulting in one saliency map per frame for each model. Then

the score (3.2) was computed for each model in each frame using the gaze location data. The

scores were analyzed using a multiple comparisons procedure known as the Tukey-Kramer

test [102]. Specifically, for each sequence, the 95% confidence intervals for the mean score of

each model was found. The top performing models were identified as those whose confidence

intervals overlap that of model with the top mean score. Hence, for any sequence, there

could be multiple models that are considered top performers.

The resulting mean scores are shown in Tables 4.6 and 4.7 for the first viewing and

second viewing, respectively. The entries shown in bold indicate top performing models for

each sequence. The ranking in terms of the number of appearances among top performers

across both viewings is shown in Fig. 4.6. As seen from these results, out of 24 cases for the

two viewings, both GMC-S and IKN-FA appeared 12 times among top performers. Also,
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Table 4.6: Mean accuracy scores for several saliency estimation methods based on the first
viewing in the eye-tracking dataset, with top scores indicated in bold.

Video IKN-FA QDCT GBVS MSSS IB CA QFTA SR WK GMC-S IKN-A
Bus 23.50 22.35 23.20 15.54 15.77 24.02 19.32 16.44 25.21 21.33 44.21
City 9.12 15.17 23.49 15.58 13.39 18.15 18.70 10.19 10.57 68.04 16.01
Crew 19.60 20.88 23.16 19.40 16.16 21.20 19.04 13.06 21.63 20.17 29.43

Foreman 28.99 14.89 29.48 17.71 25.15 19.11 16.20 19.45 20.60 38.40 29.15
Flower Garden 51.31 20.04 27.86 20.31 19.35 19.03 18.40 19.94 17.70 32.55 30.08
Hall Monitor 81.62 21.82 33.98 30.42 59.35 21.95 17.03 39.82 78.35 47.31 39.83

Harbor 31.12 13.72 24.27 13.87 20.73 13.99 16.72 12.76 28.00 33.14 27.47
Mobile Calendar 44.74 14.84 25.30 12.72 21.40 13.77 10.94 30.16 18.31 31.55 39.67

Mother & Daughter 32.63 20.14 29.93 16.32 29.48 23.34 18.86 22.58 33.25 18.60 33.98
Soccer 31.19 23.34 26.96 25.44 23.04 24.62 21.43 22.01 20.61 39.68 36.68
Stefan 67.42 19.81 43.39 18.59 51.26 26.19 23.28 28.27 31.03 73.92 70.31
Tempete 34.33 21.46 24.20 25.64 28.02 24.55 15.39 17.24 10.32 37.18 28.64

Table 4.7: Mean accuracy scores for several saliency estimation methods based on the second
viewing in our eye-tracking dataset, with top scores indicated in bold.

Video IKN-FA QDCT GBVS MSSS IB CA QFTA SR WK GMC-S IKN-A
Bus 20.83 21.85 23.09 16.56 14.94 24.29 19.73 15.55 22.44 19.23 35.53
City 10.67 15.04 22.88 15.93 14.61 17.75 18.73 10.46 10.93 62.47 15.95
Crew 18.95 21.85 22.95 20.18 16.53 22.29 19.72 13.69 22.87 18.83 33.40

Foreman 30.01 15.04 29.79 17.85 24.50 19.42 16.37 20.07 20.85 41.62 30.05
Flower Garden 48.93 21.42 29.47 21.89 20.48 20.76 18.61 20.03 19.48 34.46 33.63
Hall Monitor 83.71 23.79 37.75 30.15 59.00 23.52 18.32 47.88 91.66 55.79 47.56

Harbor 36.81 14.14 23.86 13.90 23.71 13.75 16.38 13.83 31.66 34.29 27.79
Mobile Calendar 40.21 14.85 24.13 13.30 21.17 14.22 11.44 26.61 16.75 34.46 37.02

Mother & Daughter 35.13 20.00 30.10 15.86 30.96 23.70 19.26 23.23 32.57 17.84 33.72
Soccer 29.12 25.15 27.98 27.58 22.62 27.13 23.50 23.66 22.58 40.15 33.36
Stefan 66.91 19.47 40.78 17.03 48.69 25.98 22.17 27.39 30.55 73.50 69.18
Tempete 34.05 20.37 22.29 23.68 28.80 24.22 14.57 16.32 10.40 31.70 25.58

the proposed IKN-A appeared 10 times among top performers, and it ranks third in terms

of the number of appearances among top performers, just behind IKN-FA and GMC-S.

We also compared the accuracy of the proposed GMC-S method against that of IKN-FA

using the average AUC scores on our eye-tracking dataset. The results for both viewings are

shown in Table 4.8. To check for the statistical significance, a t-test was performed with the

null hypothesis that the AUC scores of the two models come from Gaussian distributions

with equal means. The resulting p-values are also shown in this table. As seen from these

results, GMC-S provides comparable results to IKN-FA in terms of the average AUC score

metric in both viewings. All the obtained p-values are larger than 0.05, indicating statistical

tie. The average ROC curves (across all sequences in the eye-tracking dataset) of the two

models for both viewings are shown in Fig. 4.8. For the first viewing, the average AUC
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Figure 4.6: Model ranking based on the number of top performances.

score of IKN-FA across all videos is about 0.6586 while the average AUC score of GMC-S

is 0.6461. For the second viewing, the average AUC score of IKN-FA across all videos is

about 0.6599 while that of GMC-S is 0.6532.

Based on the results reported in this section, we observe that the proposed method has a

higher accuracy score than IKN-FA on several sequences with camera motion such as City,

Soccer, and Tempete, as may be expected based on its design. Fig. 4.7 shows an example.

A frame from City is shown in this figure, along with the gaze locations from the dataset in

Chapter 3, the corresponding saliency map generated by IKN-FA, and the one generated by

the proposed GMC saliency estimation method. As seen in the figure, the proposed method

is able to pinpoint the salient object more accurately than IKN-FA in this case.

4.5 Computational Complexity

Having assessed the accuracy of the our convex approximation to IKN saliency from Sec-

tion 4.2 and the proposed GMC saliency estimation method from Section 4.3, we now analyze

their computational complexity.
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(a) (b)

(c) (d)

Figure 4.7: A frame from City : (a) original frame (b) heat map of the actual gaze locations
(c) the saliency map generated by IKN-FA (d) the saliency map generated by the proposed
GMC saliency detection method.

4.5.1 Complexity of the proposed convex approximation to IKN saliency

In this section, the computational complexity of our convex approximation to IKN saliency

from Section 4.2 is estimated as the number of operations needed to produce the saliency

map for one video frame. Note that by “operation” we mean operations such as addi-

tion/subtraction, multiplication/division, and absolute value computation.

Consider a video frame of size W × H pixels. To compute the saliency of a Nb × Nb

block X based on (4.9), we need to compute both Sspatial(X) and Stemporal(X). The first

step in computing Sspatial(X) is to compute the 2-D DCT of X, which is of size Nb × Nb.

Note that the multiplication of a A×B matrix by a B ×C matrix requires A ·C · (2B − 1)

operations, while computing the 2-D DCT of a Nb ×Nb block requires two Nb ×Nb matrix
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Table 4.8: Comparing the proposed GMC saliency detection method (GMC-S) with IKN-FA
based on mean AUC score.

Sequence View-1 View-2
IKN-FA GMC-S p-value IKN-FA GMC-S p-value

Bus 0.621949 0.594380 0.000085 0.594323 0.587702 0.000004
City 0.465959 0.704848 0.000000 0.468320 0.727083 0.000000
Crew 0.589822 0.580475 0.000000 0.558933 0.544043 0.000000

Foreman 0.651316 0.688162 0.000004 0.673088 0.682119 0.000000
Flower Garden 0.641450 0.598301 0.000005 0.645224 0.632190 0.000000
Hall Monitor 0.818588 0.655954 0.000002 0.814053 0.678976 0.000000

Harbor 0.603295 0.613706 0.000000 0.641240 0.638396 0.000000
Mobile Calendar 0.662766 0.583768 0.000000 0.675020 0.646586 0.000000

Mother & Daughter 0.662984 0.514667 0.000000 0.669394 0.498616 0.000000
Soccer 0.724149 0.737701 0.000000 0.691267 0.712680 0.000000
Stefan 0.786270 0.795846 0.000002 0.806129 0.812558 0.000008
Tempete 0.674131 0.685619 0.000000 0.682309 0.677392 0.000000

multiplications. Hence, if the 2-D DCT of X isn’t already available in the video processing

system, computing it requires 2N2
b (2Nb − 1) operations.

We then need to compute the squares of the Wiener-filtered DCT coefficients, which re-

quires 2N2
b operations, and sum them up (4.7), which requires approximately N2

b operations.

Hence, computing Sspatial(X) in one color channel requires approximately N2
b (4Nb+1) oper-

ations. For the common YUV 4:2:0 video format, the total computational cost for computing

Sspatial(X) will be approximately 1.5(N2
b (4Nb + 1)).

To compute Stemporal(X), we first need to compute the absolute difference between X

and the co-located Nb × Nb block in the previous frame in the luma (Y) channel. This

step requires 2N2
b operations. We then need to compute the 2-D DCT of the obtained

residual block, which requires 2N2
b (2Nb− 1) operations. After that we need to compute the

sum of the squared Wiener-filtered DCT coefficients of the residual block (4.8), which re-

quires approximately 2N2
b +N

2
b operations. Hence, computing Stemporal(X) requires approx-

imately N2
b (4Nb + 3) operations. Overall, computing S(X) in (4.9) requires approximately

N2
b (10Nb + 4.5) + 2 operations.

According to the estimates obtained above, the number of operations needed by the

proposed convex approximation for computing the saliency of all Nb ×Nb blocks in a static

image of size W ×H, without temporal saliency, would be

ζ(CAS) ≈ W ·H
Nb ·Nb

(1.5(N2
b (4Nb + 1))). (4.12)
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Figure 4.8: Average ROC curves of IKN-FA and the proposed GMC saliency detection
method for the first viewing (left) and second viewing (right) of the 12 standard sequences
in our eye-tracking dataset. The dashed diagonal line in the two figures shows an AUC score
of 0.5, corresponding to pure chance.

The complexity of computing the saliency of all Nb × Nb blocks in a video frame of size

W ×H, including the temporal saliency term, would be

ζ(CAV ) ≈ W ·H
Nb ·Nb

(N2
b (10Nb + 4.5) + 2). (4.13)

In our experiments, the block size was 16 × 16. Hence, Nb = 16, which gives ζ(CAS) ≈
98 ·W ·H, and ζ(CAV ) ≈ 165 ·W ·H.

Computational complexity of the IKN models for static images and video were studied

in [103]. For aW×H image, saliency computation using the IKN model requires ζ(IKN) ≈
1119 ·W ·H operations. Comparing ζ(IKN) with ζ(CAS), we conclude that the complexity

of our convex approximation for static images is about 1/11-th of the complexity of the

IKN model. For a W × H video frame, taking motion and flicker into account, saliency

computation according to the IKN model requires ζ(IKNv) ≈ 1539 ·W ·H operations [103].

Comparing ζ(CAV ) with ζ(IKNv) shows that our convex approximation to IKN saliency

for video requires about 1/9-th of the complexity of the IKN model itself.
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4.5.2 Complexity of the proposed GMC saliency estimation method

The GMC saliency estimation method was developed for video coding applications, as will be

described in detail in Chapter 5. In such applications, motion estimation, which is a process

of finding the best motion vector for each block, is performed for each predictively-encoded

frame to achieve high compression effectiveness. Since motion estimation is performed in

video coding anyway, the cost of estimating motion vectors is not included in the cost of

GMC saliency estimation. We simply reuse the already-estimated motion vectors as an

input to the GMC block.

We start with an estimate of the complexity of the global motion compensation (GMC)

process. Although our GMC implementation is based on [14], we use the method from [104]

as a representative GMC method for the purpose of estimating computational complexity,

since its complexity is more tractable. In [104], motion model parameters m are estimated

in an iterative process. Specifically, given a motion vector field with n motion vectors, the

parameters m are estimated in each iteration as follows

m = (ΩtΨΩ)−1ΩtΨV, (4.14)

where Ω is a 2n×4 matrix, Ψ is a diagonal 2n×2n matrix, V is a 2n×1 vector, and m is a

4×1 vector. Since Ψ is diagonal, computing ΩtΨ requires 4·2n = 8n operations. Given that

the multiplication of a A×B matrix by a B×C matrix requires A ·C · (2B− 1) operations,

computing (ΩtΨ)V needs 4(4n− 1) operations. We then need to compute (ΩtΨ)Ω, which

needs 16(4n − 1) operations. A Singular Value Decomposition (SVD) [105] can be used

to compute (ΩtΨΩ)−1. To compute the SVD of a A × B matrix, 4A2B + 8AB2 + 9B3

operations are needed [105]. The SVD results in three matrices by which we can compute

the inverse of the matrix. Since ΩtΨΩ is of size 4×4, it can be shown that the computation

of (ΩtΨΩ)−1 requires 1344 + 2 · (4 · 4 · (2 · 4 − 1)) = 1568 operations. Finally, we need to

multiply (ΩtΨΩ)−1 by ΩtΨV, which requires 28 operations. Thus, in total, computing m

in each iteration requires 88n+ 1576 operations.

Within each iteration, we also need to compute a convergence error metric, which in-

volves multiplying Ω by the current m (14n operations) and subtracting the result from a

vector of size 2n × 1 containing the components of the n motion vectors (2n operations),

as well as the computation of the sum of the component-wise absolute differences of two

2n× 1 vectors (4n + 2n = 6n operations). Hence, computing the convergence error metric
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requires 14n + 2n + 6n = 22n operations. In total, 88n + 1576 + 22n = 110n + 1576 oper-

ations are needed within each iteration of the GMC method [104] for obtaining m. After

obtaining the global motion parameters m, we need to compute global motion vector within

each 4 × 4 block. This can be achieved by multiplying Ω by the obtained m, which needs

14n operations. Finally, the global motion compensation is performed by subtracting the

resulting global motion vectors from the existing motion vectors in the motion vector field.

This needs 2n more operations. Thus, after obtaining m, we need 16n operations for global

motion compensation. In Ng iterations, the total number of operations is

ζ(GMC) ≈ (8n+ 16n) +Ng(110n+ 1576), (4.15)

where we considered 4 · 2n = 8n operations for computing Ωt, which can be done outside

the loop. In our experiments, we found that usually 20 iterations are enough to achieve

convergence in the GMC process.

In our implementation, one motion vector was assigned to each 4×4 block in the frame.

The motion saliency Smotion(X) of each 16 × 16 block is computed by taking the average

magnitude of all global motion-compensated motion vectors of all 4 × 4 blocks within the

16 × 16 block. We need 4 operations to compute the magnitude of a 2-D motion vector.

We also need 16 operations to compute the average magnitude of 16 motion vectors. Since

there are sixteen 4 × 4 blocks within each 16 × 16 block, to compute the motion saliency

of a 16× 16 block, we need 16 · 4 + 16 = 80 operations. Based on the above estimates, the

total number of operations for computing the motion saliency map of all 16× 16 blocks in

a W ×H video frame is

ζ(MS) ≈ 80 · W ·H
16 · 16 + (24n+Ng(110n+ 1576)). (4.16)

Given the above estimate of motion saliency complexity and usingNg = 20, the total number

of operations required in (4.10) for a W ×H video frame is as follows

ζ(GMCS) ≈ ζ(CAS) + ζ(MS) ≈ 238 ·W ·H + 31520. (4.17)

Comparing (4.17) with the complexity of the IKN model for video, which was found

in [103] to be ζ(IKNv) ≈ 1539 ·W · H, shows that the complexity of our GMC saliency

estimation method is considerably lower. For example, for CIF video resolution (352 ×
288), we get ζ(IKNv) ≈ 6.457 · ζ(GMCS), while for HD resolution (1920 × 1080) we get

ζ(IKNv) ≈ 6.466 · ζ(GMCS). Thus, the complexity of our GMC saliency estimation is

about 1/6-th of the complexity of the IKN model for video.
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4.6 Conclusions

In this chapter, we presented two computationally-efficient saliency estimation methods.

The first one is a convex approximation to the IKN saliency model [67], which works solely

in the DCT domain and has a low computational complexity. This makes it attractive for

applications that involve convex optimization. Our experimental results indicated that the

accuracy of the proposed approximation is close to the original IKN model. The second

saliency estimation method proposed in this chapter uses global motion compensation prior

to estimating motion-induced saliency. This method’s performance is comparable to that of

the IKN model, and better in certain sequences with camera motion.



Chapter 5

Saliency-Aware Video Compression

Lossy image and video encoders are known to produce undesirable compression artifacts at

low bit rates [106],[107]. Blocking artifacts are the most common form of compression arti-

facts in block-based video compression. When coarse quantization is combined with motion-

compensated prediction, blocking artifacts propagate from one frame into subsequent frames

and accumulate, causing structured high-frequency noise or motion-compensated edge arti-

facts that may not be located at block boundaries, and so cannot be attenuated by deblock-

ing filters that mostly operate on block boundaries [107]. Such visual artifacts may become

very severe and attention-grabbing (salient), especially in low-textured regions.

Recently, region-of-interest (ROI) coding of video using computational models of visual

attention [2] has been recognized as a promising approach to achieve high-performance video

compression [5], [108], [72], [109]. The idea behind most of these methods is to encode an

area around the predicted attention-grabbing (salient) regions with higher quality compared

to other less visually important regions. Such a spatial prioritization is supported by the

fact that only a small region of 2− 5◦ of visual angle around the center of gaze is perceived

with high spatial resolution due to the highly non-uniform distribution of photoreceptors

on the human retina [5].

Granting a higher priority to the salient regions, however, may produce visible coding

artifacts in areas outside the salient regions where the image quality is lower. Such artifacts

may draw viewer’s attention away from the naturally salient regions, thereby degrading the

perceived visual quality. It is worth pointing out that a visible artifact is not necessarily

salient. A particular artifact may be visible if the user is looking directly at it or at its

neighborhood, but may go unnoticed if the user is looking elsewhere in the frame. As

70
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the severity of the artifact increases, it may become salient and draw user’s attention.

Although several methods have been developed for detecting visible (but not necessarily

salient) artifacts [110], in our work, the concept of visual saliency is used to minimize

salient coding artifacts, i.e., those coding artifacts that may grab user’s attention.

In [16], we proposed a saliency-preserving framework for region-of-interest (ROI) video

coding, whose main goal is to reduce attention-grabbing coding artifacts in non-ROI parts

of the frame in order to keep viewer’s attention on ROI parts where the video quality is

higher. The method proposed in [16] was based on finding a quantization parameter (QP)

matrix for each video frame so that the L1-norm of the difference between the saliency map

of the coded frame and the saliency map of the original raw frame is minimized under a

given a target bit rate. In this method, the desired QP matrix is obtained after multiple

encodings of each frame, which makes the process computationally expensive.

In this chapter, we extend our earlier work [16] in four ways. First, instead of using

the computationally expensive IKN model [2], [67] to estimate saliency, as in [16], here we

employ our global motion-compensated (GMC) saliency estimation method from Section 4.3.

Second, we extend the conventional H.264/AVC rate-distortion optimization (RDO) [111] for

video coding by introducing a saliency distortion term in the distortion metric. Unlike our

earlier method [16], in the new method, the saliency of non-ROIs is allowed to decrease, and

the saliency of ROIs is allowed to increase so long as the quality within ROIs is good. This

enables higher flexibility in selecting coding parameters while producing visually pleasing

results. Third, the complexity of the new method is significantly lower than that of our

earlier method [16], which makes it more amenable for practical applications. This is a

consequence of the fact that saliency estimation is performed by reusing some of the data

from the coding process. Fourth, we evaluate the proposed method using several objective

quality metrics, as well as an extensive subjective study, and compare its performance to

two state-of-the-art perceptual video coding approaches.

The chapter is organized as follows. In Section 5.1, we present an overview of the

rate distortion optimization in H.264/AVC video coding. The proposed video compression

method is described in Section 5.2. Experimental results are presented in Section 5.3,

followed by conclusions in Section 5.4.
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5.1 Rate-distortion optimization in H.264/AVC

The H.264/AVC video coding standard supports various block coding modes such as INTER

16× 16, INTER 16× 8, INTER 8× 16, INTER 8× 8, INTRA 16× 16, INTRA 4× 4, and

so on [111]. The coding mode specifies how prediction is performed (within the frame for

INTRA, between frames for INTER) and determines the possible sizes of transform kernels

employed on prediction residuals. The rate-distortion optimization (RDO) process proposed

in H.264/AVC minimizes the following Lagrangian cost function for coding mode selection

of each 16× 16 macroblock (MB) [112, 111]:

J(ψ|Q, λR) = DMSE(ψ|Q) + λRR(ψ|Q), (5.1)

where Q is the quantization step size, DMSE(ψ|Q) and R(ψ|Q) are, respectively, the Mean

Squared Error (MSE) and bit rate for coding the current MB in the coding mode ψ with

quantization step size Q, and λR is the Lagrange multiplier, which quantifies the trade-off

between the rate and distortion [112]. The Lagrangian cost function (5.1) is minimized for a

particular value of λR. Hence, λR has an important role in achieving optimal rate-distortion

(RD) performance [112, 113]. In the H.264/AVC reference software [114], λR is computed

as

λR = 0.85 · 2
(QP−12)

3 , (5.2)

where QP is the quantization parameter. The derivation of (5.2) was based on empirical

results under a “high rate” assumption [115, 112, 113]. Although (5.2) provides a simple

and effective method for finding λR, it has two main drawbacks. First, it is solely a function

of QP, and so it does not consider any property of the input signal, which means that it

does not adapt to the video content. Second, the high rate assumption does not hold at low

bit rates [115], which threatens the optimality of (5.2) under such conditions.

In the literature, several methods have been proposed to obtain λR adaptively based

on the video content when MSE is used as the distortion metric [115, 116, 117, 118]. Most

such methods utilize RD models that are based on the distribution of transformed residuals.

In particular, they use RD models that have a closed-form expression so that λR can be

obtained in closed form. For instance, in [115], a Laplace distribution-based RD model was

proposed to derive λR for each video frame adaptively based on the statistical properties of

the transformed residuals. Several methods have shown that adjusting λR on the MB level

results in better RD performance than λR adjustment on the frame level [118, 119, 120].
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Many of the existing methods for RDO utilize the MSE or Sum of Absolute Differences

(SAD) as a distortion metric, and they do not consider perceptual aspects. Recently, a

number of RDO schemes have been proposed to consider several perceptual aspects of

the Human Visual System (HVS). For instance, the authors in [121] proposed a motion-

compensated residue signal pre-processing scheme based on just-noticeable-distortion (JND)

profile for video compression. A foveated JND model was utilized in [122] for QP and

Lagrange multiplier selection in which both the QP and the Lagrange multiplier are adjusted

for each MB based on the visual noticeable distortion of the MB. Foveated imaging and

image processing exploits the fact that the spatial resolution of the human visual system

decreases significantly away from the gaze location (foveation point). By taking advantage

of this fact, it is possible to remove significant high-frequency information redundancy from

the peripheral regions around the gaze location and still obtain a perceptually good quality

image. This way, large bit rate savings can be obtained in image/video compression. In

[123], a real-time foveated multiresolution system for low-bandwidth video compression and

transmission was proposed in which the gaze location was provided by a pointing device

such as a mouse or an eye tracker. Another early work on the topic is [?]. In [83], a Foveal

Weighted Signal to Noise (FWSNR) metric was proposed to take into account the non-

uniform distribution of photoreceptors on the retina when computing SNR. Such a metric

can be utilized within a foveated image/video compression framework. In [124], an embedded

foveation image coding (EFIC) algorithm was proposed, which orders the encoded bitstream

to optimize foveated visual quality at arbitrary bit rates. In [125], a foveation scalable

video coding (FSVC) algorithm was proposed, which supplies good quality-compression

performance as well as effective rate scalability. The key idea behind this method is to

organize the encoded bitstream to provide the best decoded video at an arbitrary bit rate

in terms of foveated visual quality.

Several methods employed the Structural Similarity Index Metric (SSIM) [126] for video

coding and RDO [127, 128, 129, 130]. In [130], the authors utilized SSIM [126] as the distor-

tion metric within the RDO process. They also presented an adaptive Lagrange multiplier

selection scheme based on a novel statistical reduced-reference SSIM model and a source-

side information combined rate model. Moreover, they proposed a method to adjust the

Lagrange multiplier for each MB based on the motion information content and perceptual

uncertainty of visual speed perception. In [131], the authors also employed the SSIM as

the distortion metric, and weighted the SSIM distortion using the visual saliency of various
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MBs, with the idea that the perception of distortions is stronger in more salient regions.

5.2 Saliency-aware video compression

The proposed saliency-aware video compression is based on the following principles:

1. Highly salient regions should end up with higher perceptual quality than less salient

regions. This means that quality is directed towards the regions that viewers are likely

to look at.

2. The coding should attempt to preserve the saliency of various regions, except in the

following two cases:

• If a region is highly salient, then its saliency is allowed to increase after com-

pression, provided the quality remains sufficiently high. The reasoning here is

that we don’t mind viewers being even more drawn to high-quality regions in the

scene.

• If a region has low saliency to start with, then its saliency is allowed to decrease

after compression. The logic here is that low-saliency regions will end up with

lower quality, so the less likely the viewer is to look at such regions, the better.

In the remainder of this section, we present procedures for selecting the quantization

parameter (QP), the Lagrange multipliers, and the optimal coding mode, to satisfy the

above principles. For each MB in the frame, the QP is assigned first based on MB’s saliency,

followed by Lagrange multiplier selection and coding mode decision.

5.2.1 Macroblock QP selection

Let QPf be the quantization parameter of the current video frame, which is provided by

an appropriate frame-level rate control algorithm, e.g. [132, 133, 134]. Let Sgmc(Xi) be

the GMC saliency (4.10) of the i-th MB Xi. Also, let s̄ be the average GMC-saliency of all

MBs in the current frame. Following the method from [122], the QP for the i-th MB in the

current frame is obtained as

QPi = round

(
QPf√
wi

)
, (5.3)
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where wi is obtained through a sigmoid function

wi = a+
b

1 + exp(−c(Sgmc(Xi)− s̄)/s̄)
, (5.4)

and a, b, and c are constants. In our experiments similar to [122], we set a = 0.7, b = 0.6,

and c = 4.

Note that (5.3) gives the QP of Xi. In H.264/AVC, the relation between QP and the

quantization step size Q is

Q = 2QP/6 · ν(QP mod 6),

where ν(0) = 0.675, ν(1) = 0.6875, ν(2) = 0.8125, ν(3) = 0.875, ν(4) = 1.0, and ν(5) =

1.125 [111].

5.2.2 RDO mode decision

In addition to the conventional rate and distortion terms commonly used in the Lagrangian

cost function, we introduce a saliency distortion term Dsal(ψ|Qi,Xi) in order to obtain

the optimal coding mode according to the principles outlined above. For the i-th MB, the

proposed cost function is

Ji(ψ|Qi, λSi
, λRi

,Xi) = DMSE(ψ|Qi,Xi) + λSi
Dsal(ψ|Qi,Xi) + λRi

R(ψ|Qi,Xi), (5.5)

where λSi
is the Lagrangian multiplier associated with saliency distortion Dsal(ψ|Qi,Xi).

The saliency distortion is defined as the absolute difference between the GMC saliency (4.10)

of the uncompressed i-th MB and that of the i-th MB coded using coding mode ψ with

quantization step size Qi, that is,

Dsal(ψ|Qi,Xi) = |Sgmc(Xi)− Sgmc(X̃i(ψ|Qi))|, (5.6)

where Xi is the uncompressed i-th MB and X̃i(ψ|Qi) denotes the i-th MB coded using

coding mode ψ with quantization step size Qi.

We note that compression generally does not change the direction or magnitude of motion

of various regions, except possibly at extremely low bitrates. We will therefore assume that

the change in motion saliency in (4.10) due to compression is negligible compared to the

change in spatial saliency. Hence, using (4.10), Dsal(ψ|Qi,Xi) can be approximated as

Dsal(ψ|Qi,Xi) = µi · |Sspatial(Xi)− Sspatial(X̃i(ψ|Qi))|, (5.7)
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where Sspatial(Xi) is the spatial saliency of Xi, computed based on (4.7), and

µi = 1− α+ βSmotion(Xi), (5.8)

where Smotion(Xi) is the motion saliency of Xi, which can be computed using the method

described in Section 4.3.

Equations (5.7)-(5.8) suggest that the saliency distortion for a MB is the spatial saliency

distortion weighted by the motion saliency of the MB. Hence, other things being equal, the

saliency distortion is expected to be larger in regions where the motion saliency is higher.

According to the principles outlined at the beginning of this section, the saliency of

highly salient regions (ROIs) is allowed to increase after compression, if the quality of such

regions after compression is good. This condition can be characterized by

Condition A =





Xi ∈ ROI, and

Sspatial(Xi) < Sspatial(X̃i(ψ|Qi)), and

DMSE(ψ|Qi,Xi) < δ,

where δ is a user-defined threshold. Also, the saliency of low-salient regions (non-ROIs) is

allowed to decrease after compression. Such condition is characterized by

Condition B =




Xi ∈ non-ROI, and

Sspatial(Xi) > Sspatial(X̃i(ψ|Qi)).

If either of these two conditions holds, we set the saliency-related Lagrange multiplier

λSi
to zero:

λSi
=




0, if Condition A or B holds,

λS , otherwise,
(5.9)

where λS is a user-defined parameter. In our experiments, we set λS = 1.5. This means that

the saliency distortion term will be ignored in the cost function (5.5) if either Condition A or

B holds. Hence, in such cases, the coding mode will be chosen by considering conventional

rate and distortion only, while the saliency will be allowed to change in the desired direction:

increase in ROI, and decrease in non-ROI.

We next discuss the choice of λRi
. From (5.5), λRi

can be obtained by calculating the

partial derivative of Ji with respect to R, then setting it to zero, and finally solving for λRi
.
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More specifically, we need to have

∂Ji(ψ|Qi, λSi
, λRi

,Xi)

∂R(ψ|Qi,Xi)

=
∂DMSE(ψ|Qi,Xi)

∂R(ψ|Qi,Xi)
+ λSi

∂Dsal(ψ|Qi,Xi)

∂R(ψ|Qi,Xi)
+ λRi

= 0.

(5.10)

Solving for λRi
gives

λRi
= −∂DMSE(ψ|Qi,Xi)

∂R(ψ|Qi,Xi)
− λSi

∂Dsal(ψ|Qi,Xi)

∂R(ψ|Qi,Xi)
. (5.11)

With Lagrange multipliers set according to (5.9) and (5.11), the encoder can choose the

optimal coding mode ψ for Xi. We next derive a closed-form expression for λRi
for the case

when the transformed residual of Xi obeys a Laplacian model.

5.2.3 Statistical modeling of transformed residuals

Following [135], we model the marginal density of transformed residuals Y by a zero-mean

Laplace probability density function with parameter λ,

fY (y;λ) =
λ

2
e−λ|y|. (5.12)

The relationship between λ and standard deviation σY is

λ =

√
2

σY
. (5.13)

To describe the correlation structure of the signal, we adopt a separable autocorrelation

function ri(m,n) = σ2riρ
|m|
i ρ

|n|
i , where m and n are the horizontal and vertical distances

between samples, respectively, σ2ri is the variance of the residual signal of MB Xi before

transformation, and ρi is the correlation coefficient of the residual signal of MB Xi, assumed

to be equal in horizontal and vertical directions. This model is thought to be a good model

for natural digital images [136]. Using such a model, the variance of the (j, l)-th transform

coefficient obtained under coding mode ψ can be obtained as follows [137, 106, 136]

σ2Yi
(j, l) = σ2ri [A(ψ)Ki(ψ)A(ψ)T ]j,j [A(ψ)Ki(ψ)A(ψ)T ]l,l, (5.14)
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where A(ψ) is the N ×N transform matrix for the coding mode ψ and Ki(ψ) is the N ×N

covariance matrix

Ki(ψ) =




1 ρi ρ2i · · · ρN−1
i

ρi 1

ρ2i
. . .

...
... ρi

ρN−1
i · · · ρi 1




. (5.15)

In (5.14), notation [.]j,j means the (j, j)-th element of the matrix. Hence, according to the

adopted model, the (j, l)-th transform coefficient of the residual of Xi is a Laplacian random

variable with parameter

λjli =

√
2

σYi
(j, l)

. (5.16)

Note that the correlation coefficient ρi and variance σ2ri are estimated from the residual

signal of MB Xi for each i. Hence, the model is adapted locally to the data.

5.2.4 The rate model

The rate of MB Xi is obtained from the entropy of its quantized transformed residual. The

entropy of the (j, l)-th coefficient is given by

hi(j, l) = −pi0(j, l) log2 pi0(j, l)− 2
∞∑

n=1

pin(j, l) log2 pin(j, l), (5.17)

where pi0 and pin are the probabilities of transformed residuals being quantized to the zeroth

and n-th quantization levels, respectively, and can be obtained as

pi0(j, l) =

∫ (Qi+γQi)

−(Qi−γQi)
f
λjl
i

(x)dx, (5.18)

pin(j, l) =

∫ (n+1)Qi−γQi

nQi−γQi

f
λjl
i

(x)dx, (5.19)

where Qi is the quantization step size of Xi, and Fi = γQi denotes the rounding offset of

the quantizer with γ ∈ (0, 1). In H.264/AVC, γ = 1/6 for inter frames and γ = 1/3 for intra
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frames [115, 114]. The total rate of MB Xi coded under coding mode ψ with quantization

step size Qi can be estimated from the sum of entropies of individual transform coefficients

R(ψ|Qi,Xi) = ζ
∑

(j,l)

hi(j, l), (5.20)

where ζ is a factor to compensate for the inaccuracies in the model. For example, the

transform coefficients are assumed to be correlated in Section 5.2.3, which will result in a

lower rate than the sum of their individual entropies. Hence, we expect ζ < 1. In our

experiments, we set ζ = 0.8.

In order to simplify subsequent equations, we define the following symbols for commonly

used quantities:

νjli = λjli Qi

φjli = e−νjli − 1

ξjli = eλ
jl
i (Fi−Qi)

ψjl
i = eν

jl
i

κjli = (λjli )
2QiFi

θjli = λjli ξ
jl
i

ηjli = 1− eλ
jl
i (Fi−Qi).

(5.21)

Substituting (5.17)-(5.19) into (5.20), using (5.21), we obtain a closed-form expression for

the rate of Xi in (5.22).

R(ψ|Qi,Xi) = − ζ

ln 2

∑

(j,l)

(
ξjli

(
ln(−φjli )− ln 2 + Fiλ

jl
i +

νjli

φjli

)
+ ηjli ln(ηjli )

)
. (5.22)

5.2.5 The distortion models

The total MSE distortion in Xi is the sum of quantization distortions contributed by indi-

vidual transform coefficients:

DMSE(ψ|Qi,Xi) =
∑

(j,l)

(∫ (Qi+γQi)

−(Qi−γQi)
x2f

λjl
i

(x)dx

+ 2

∞∑

n=1

∫ (n+1)Qi−γQi

nQi−γQi

(x− nQi)
2f

λjl
i

(x)dx
)
.

(5.23)
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After some algebraic manipulation, DMSE(ψ|Qi,Xi) can be expressed in the closed form as

DMSE(ψ|Qi,Xi) =
∑

(j,l)

χjl
i =

∑

(j,l)

eλ
jl
i Fi(2νjli + (νjli )

2 − 2κjli ) + 2− 2ψjl
i

−φjli (λ
jl
i )

2
. (5.24)

Based on (5.7), the saliency distortion of a MB is proportional to the spatial saliency

distortion of the MB weighted by the motion saliency of the MB. As described in Section 4.2,

our approximation to the spatial saliency of a MB is the power of the Wiener-filtered DCT

of the MB. In order to estimate the spatial saliency distortion of a block due to quantization,

we model the quantization process by an equivalent quantization noise [138], and consider

the Wiener-weighted energy of the quantization noise in the DCT domain as our spatial

saliency distortion. More specifically, we consider the following expression as a model for

Dsal(ψ|Qi,Xi).

Dsal(ψ|Qi,Xi) = µi
∑

(j,l)

H(j, l)χjl
i , (5.25)

where χjl
i is as defined in (5.24).

5.2.6 A closed-form expression for λRi

From the expressions for R(ψ|Qi,Xi), DMSE(ψ|Qi,Xi) and Dsal(ψ|Qi,Xi), we can obtain

the expression for λRi
. To do this, using the chain rule, we express the ratios in (5.11) in

terms of partial derivatives with respect to Qi,

λRi
= −

∂
∂Qi

(DMSE(ψ|Qi,Xi) + λSi
Dsal(ψ|Qi,Xi))

∂
∂Qi

R(ψ|Qi,Xi)
, (5.26)

where the numerator is given in (5.27), and the denominator is given in (5.28).

∂

∂Qi
(DMSE(ψ|Qi,Xi) + λSi

Dsal(ψ|Qi,Xi))

=
∑

(j,l)

(1 + µiλsH(j, l))

(
2λjli ν

jl
i − eFiλ

jl
i

(
2λjli − 2Fi(λ

jl
i )

2 + 2(λjli )
2Qi

)

(λjli )
2(ψjl

i − 1)
+

ψjl
i

(
eFiλ

jl
i

(
(νjli )

2 − 2Fi(λ
jl
i )

2Qi + 2λjli Qi

)
− 2νjli + 2

)

λjli (ψ
jl
i − 1)2

)
.

(5.27)
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∂R(ψ|Qi,Xi)

∂Qi
=
−ζ
ln 2

∑

(j,l)

θjli

(
1 +

(λjli
φjli

− λjli

ψjl
i φ

jl
i

+
(λjli )

2Qi

ψjl
i (φ

jl
i )

2

)
+ ln(−φjli )−

(
ln(−φjli )− ln 2 + Fiλ

jl
i +

νjli

φjli

))
.

(5.28)

Note that several quantities, such as νjli and λjli , appear in both (5.27) and (5.28), which

means that computational effort can be reduced by computing these quantities only once.

In our implementation, we first compute (5.27), and values of the quantities that are shared

with (5.28) are reused.

It is worth pointing out that λRi
in (5.26) depends on the content of each MB through

the variance and correlation of the residual of MB Xi, as well as the motion and spatial

saliency of Xi, based on (5.7). Hence, using (5.26), we can adjust the Lagrange multiplier

in a content-adaptive manner on a MB-by-MB basis.

5.3 Experimental results

5.3.1 Objective quality assessment

In order to objectively compare the perceptual quality of video produced by the proposed

saliency-aware video compression method versus that of other methods, we used the eye-

tracking-weighted Mean Square Error (EWMSE) metric proposed in [72]. The EWMSE

value of an encoded video frame can be computed as follows [72]

EWMSE =

∑W
x=1

∑H
y=1

(
wx,y · (F ′

x,y − Fx,y)
2
)

WH
∑W

x=1

∑H
y=1wx,y

, (5.29)

where F ′
x,y and Fx,y respectively denote the pixel at location (x, y) in the encoded frame F′

and the original frame F, W and H are the width and height of F in pixels, and wx,y is

the weight for distortion at pixel location (x, y), obtained using the following 2-D Gaussian

function

wx,y =
1

2πσxσyG

G∑

g=1

exp

{
−
(
(x− xpg)

2

2σ2x
+

(y − ypg)
2

2σ2y

)}
, (5.30)

where (xpg , ypg) is the eye fixation position of the g-th subject. We used eye fixation data

from our database in Chapter 3, where the total number of subjects is G = 15. In (5.30), σx



CHAPTER 5. SALIENCY-AWARE VIDEO COMPRESSION 82

and σy are two parameters that specify the width of the Gaussian function, and they depend

on the viewing distance and viewing angle. The values of σx and σy can be taken based on

the fovea size, which is about 2− 5◦ of visual angle [12], [72]. Here, similar to [12], [72], we

use σx = σy = 64 pixels, which is equivalent to 2◦ of the visual angle. Using the EWMSE

metric given by (5.29), the eye-tracking-weighted PSNR (EWPSNR) in dB is defined as

EWPSNR = 10 log

(
2552

EWMSE

)
. (5.31)

In our experiments, the average EWPSNR across all frames is considered as one measure

of the perceptual quality of the video - the higher the EWPSNR, the higher the quality of

the encoded video.

In order to evaluate the proposed saliency-aware video compression method, we com-

pared its EWPSNR performance at several bit rates with the conventional RDO method

implemented in the H.264/AVC reference software JM 16.1 [114], as well as two recent

ROI-coding methods: the FJND method proposed in [122] and the visual attention guided

bit allocation (VAGBA) method proposed in [72]. The comparison was made on the 12

sequences from our database in Chapter 3. Higher average EWPSNR is expected if, on av-

erage, the predictions of highly salient regions are closer to the actual human fixation points.

To compute the EWPSNR values, we used the luma (Y) pixel values and the eye-tracking

data of the first viewing in our eye-tracking database.

All videos were encoded by each of the aforementioned methods at different bit rates

with a GOP structure of IPPP. To encode a video at different bit rates, we varied the frame-

level QP (QPf ) of the video between 25 to 40, and at each value, we computed the average

EWPSNR and PSNR of the encoded video. Two sample sets of results, for Foreman and

Tempete, are shown in Fig. 5.1 and 5.2, respectively. In these figures, EWPSNR is plotted

against the bit rate. In these experiments, FJND and VAGBA used IKN-FA saliency maps,

while the proposed saliency-aware coding method used the saliency maps produced by our

GMC saliency estimation method from Section 4.3. As seen in the figures, the proposed

method achieves higher EWPSNR than the other three methods across a range of bit rates.

In the next set of results, we utilized the Bjontegaard Delta (BD) method [139] to mea-

sure the average difference between rate-distortion (RD) curves. We applied this procedure

on both EWPSNR and PSNR curves. To be able to compare the performance of various

methods, we considered the conventional RDO method as the baseline and computed the

average difference of various metrics relative to this baseline.



CHAPTER 5. SALIENCY-AWARE VIDEO COMPRESSION 83

0 100 200 300 400 500 600 700
28

30

32

34

36

38

40

Rate (kbps)

E
W

P
S

N
R

(d
B

)

Foreman (CIF)

 

 

RDO
Proposed
FJND
VAGBA

Figure 5.1: A plot of EWPSNR versus rate for Foreman.

We first compare the various methods in terms of their bit allocation strategy. To

do this, we remove the influence of saliency estimation and its accuracy by using saliency

maps produced by eye-tracking heat maps from the database in Chapter 3. This way,

FJND, VAGBA, and the proposed method use the same saliency maps, which in turn

precisely match the eye-tracking data, leaving bit allocation as the main difference among

the methods. Table 5.1 shows BD-EWPSNR and BD-PSNR results with conventional RDO

method taken as the baseline. As seen from the results, the proposed method is able to

provide an average EWPSNR gain of 2.05 dB with respect to RDO, 1.00 dB (= 2.05 dB

−1.05 dB) with respect to VAGBA, and 0.67 dB (= 2.05 dB −1.38 dB) with respect to

FJND. In terms of conventional PSNR, the average gain of the proposed method is 0.25 dB

(= −0.01 dB +0.26 dB) with respect to FJND, and 0.14 dB (= −0.01 dB +0.15 dB) with

respect to VAGBA, while the average loss against RDO is minimal (0.01 dB). These results

indicate that the bit allocation strategy of the proposed method is more efficient than that

of FJND and VAGBA.

Next, we compare the combination of the proposed methods (that is, the proposed

video coding method coupled with the GMC saliency estimation from Section 4.3) against

the state of the art. As the state of the art, we take FJND and VAGBA coupled with the

IKN-FA saliency model, which was shown as the most accurate in terms of gaze prediction
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Figure 5.2: A plot of EWPSNR versus rate for Tempete.

among the nine tested methods in [92] on the eye-tracking dataset described in Chapter 3.

The methods are compared in terms of BD-EWPNSR, BD-PSNR, BD-SSIM [126], and BD-

VQM [140],[141] in Table 5.2, with RDO taken as the baseline. Note that the lower the

VQM value, the higher the visual quality measured by VQM. As seen from the table, on

average, the proposed methods increase the BD-EWPSNR by 1.45 dB with respect to con-

ventional RDO, while achieving zero average loss in PSNR (BD-PSNR = 0.00). Moreover,

the proposed methods improve the video quality in terms of all metrics (EWPSNR, PSNR,

SSIM, VQM) compared to FJND and VAGBA.

It is interesting to note that RDO performs slightly better, on average, than any of the

perceptually-motivated video coding methods in terms of SSIM and VQM. This is likely due

to the fact that both SSIM and VQM ignore visual attention (i.e., saliency), while SSIM in

addition does not capture temporal aspects of visual quality.

5.3.2 Subjective evaluation

Finally, we performed a subjective evaluation of the perceptual quality of sequences en-

coded using the proposed saliency-aware compression method versus sequences encoded

using FJND [122]. We chose FJND as the competing method here because it performed

slightly better than VAGBA in the tests described above. We utilized a Two Alternative
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Table 5.1: Comparing the proposed video compression method with the FJND method [122]
and the VAGBA method [72] based on the average BD-EWPSNR and BD-PSNR values with
respect to the conventional RDO method when the eye-tracking heatmaps are used as the
saliency maps.

Video FJND [122] VAGBA [72] Proposed
BD-EWPSNR BD-PSNR BD-EWPSNR BD-PSNR BD-EWPSNR BD-PSNR

Bus +1.58 −0.21 +1.16 −0.15 +2.16 +0.08
City +1.40 −0.27 +1.01 −0.15 +1.98 −0.15
Crew +1.53 −0.10 +1.02 −0.07 +1.90 +0.20

Foreman +1.52 −0.31 +0.89 −0.19 +1.98 −0.17
Flower Garden +1.77 −0.25 +1.26 −0.11 +2.31 +0.02
Hall Monitor +1.33 −0.54 +0.94 −0.29 +1.79 −0.33

Harbor +1.02 −0.19 +1.07 −0.14 +1.95 −0.16
Mobile Calendar +1.00 −0.18 +1.15 −0.13 +2.39 +0.31

Mother & Daughter +1.28 −0.37 +0.91 −0.18 +2.03 −0.31
Soccer +1.01 −0.13 +0.93 −0.14 +1.88 −0.05
Stefan +1.80 −0.39 +1.13 −0.16 +2.04 −0.04
Tempete +1.67 −0.15 +1.15 −0.09 +2.21 +0.43

Average +1.38 −0.26 +1.05 −0.15 +2.05 −0.01

Forced Choice (2AFC) method [142] to compare subjective video quality. In 2AFC, the

participant is asked to make a choice between two alternatives, in this case, the video en-

coded using the proposed method vs. video encoded using FJND. This way of comparing

quality is less susceptible to measurement noise than quality ratings based on scale, such as

Mean Opinion Score (MOS) and Double Stimulus Continuous Quality Scale (DSCQS) [143],

because participant’s task is much simpler than mapping quality to a number on the scale.

All 12 CIF sequences from the database in Chapter 3 were used in the experiment. All

sequences were encoded with a GOP structure of IPPP using the two compression methods.

The average PSNR of the encoded videos was around 31 dB, and their bit rates were

matched to within 1% difference. In each trial, participants were shown two videos, side by

side, at the same vertical position separated by 1 cm horizontally on a mid-gray background.

Each video pair was shown for 10 seconds. After this presentation, a mid-gray blank screen

was shown for 5 seconds. During this period, participants were asked to indicate on an

answer sheet, which of the two videos looks better (Left or Right). They were asked to

answer either Left or Right for each video pair, regardless of how certain they were of their

response. Participants did not know which video was produced by the proposed method

and which one was produced by FJND. Randomly chosen half of the trials had the video
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Table 5.2: Comparing various methods with conventional RDO based on the average BD-
EWPSNR, average BD-PSNR, average BD-SSIM, and average BD-VQM values.

FJND [122]
Video BD-EWPSNR BD-PSNR BD-SSIM BD-VQM
Bus +0.28 −0.18 −0.007362 +0.011053
City +0.07 −0.09 −0.003250 +0.004384
Crew +0.27 −0.08 −0.002006 +0.009742

Foreman +0.19 −0.16 −0.002003 +0.006101
Flower Garden +0.60 −0.12 −0.002202 +0.007403
Hall Monitor +0.67 −0.12 −0.002378 +0.014506

Harbor +0.13 −0.15 −0.004979 +0.017908
Mobile Calendar +0.21 −0.12 −0.003537 +0.009658

Mother & Daughter +0.46 −0.29 −0.004065 +0.016102
Soccer +0.23 −0.17 +0.024222 −0.008660
Stefan +0.65 −0.12 −0.000593 +0.000102
Tempete +0.98 −0.09 −0.003144 +0.009854

Average +0.40 −0.15 −0.003484 +0.010925

VAGBA [72]

Video BD-EWPSNR BD-PSNR BD-SSIM BD-VQM
Bus +0.37 −0.14 −0.005982 +0.009714
City +0.06 −0.15 −0.005329 +0.012298
Crew +0.49 −0.13 −0.003320 +0.017451

Foreman +0.48 −0.24 −0.003009 +0.011736
Flower Garden +0.81 −0.13 −0.002743 +0.013063
Hall Monitor +0.81 −0.13 −0.003006 +0.031234

Harbor +0.28 −0.16 −0.004281 +0.011610
Mobile Calendar +0.32 −0.13 −0.003245 +0.004019

Mother & Daughter +0.32 −0.23 −0.002226 +0.006420
Soccer +0.54 −0.23 −0.008660 +0.021080
Stefan +0.67 −0.13 −0.000863 +0.000119
Tempete +0.71 −0.13 −0.002862 +0.009357

Average +0.49 −0.17 −0.003794 +0.012347

Proposed

Video BD-EWPSNR BD-PSNR BD-SSIM BD-VQM
Bus +0.93 +0.02 −0.002766 0.001434
City +1.55 −0.27 −0.014254 +0.028715
Crew +0.94 +0.11 +0.001360 +0.005731

Foreman +1.62 −0.11 −0.001289 +0.007552
Flower Garden +1.73 +0.14 +0.003143 −0.001978
Hall Monitor +1.65 −0.09 −0.002385 +0.017588

Harbor +0.98 −0.12 −0.005621 +0.022322
Mobile Calendar +1.50 +0.38 +0.006875 −0.006075

Mother & Daughter +1.54 −0.26 −0.004703 +0.017603
Soccer +1.30 −0.31 −0.014136 +0.036290
Stefan +1.67 +0.07 +0.001622 −0.000051
Tempete +1.95 +0.45 +0.007581 −0.011511

Average +1.45 +0.00 −0.002048 +0.009802
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produced by the proposed method on the left side of the screen and the other half on the

right side, in order to counteract side bias in the responses. This gave a total of 12 · 2 = 24

trials.

The experiment was run in a quiet room with 15 participants (14 male, 1 female, aged

between 18 and 30). All participants had normal or corrected to normal vision. A 22-inch

Dell monitor with brightness 300 cd/m2 and resolution 1680× 1050 pixels was used in our

experiments. The brightness and contrast of the monitor were set to 75%. The actual height

of the displayed videos on the screen was 185 millimeters. The illumination in the room was

in the range 280-300 Lux. The distance between the monitor and the subjects was fixed at

80 cm. Each participant was familiarized with the task before the start of the experiment

via a short printed instruction sheet. The total length of the experiment for each participant

was approximately 6 minutes.

The results are shown in Table 5.3 in terms of the number of responses that showed

preference for the FJND method vs. the proposed method. To test for statistical signifi-

cance, we used a two-sided χ2-test [144], with the null hypothesis that there is no preference

for either method, i.e., that the votes for each method come from distributions with equal

means. Under this hypothesis, the expected number of votes in each trial is 15 for each

method, because each video pair was shown twice to each of the 15 participants. The p-

value [144] of the test is indicated in the table. As a rule of thumb, the null hypothesis is

rejected when p < 0.05. When this happens in Table 5.3, it means that the two methods

under the comparison cannot be considered to have the same subjective quality, since one of

them has obtained a statistically significantly higher number of votes, and therefore seems

to have better quality.

In 8 out of the 12 cases in Table 5.3 we have p < 0.05, which indicates that subjects

showed a statistically significant preference for the proposed method vs. FJND. In only 4

cases (Bus, Flower Garden, Harbor, and Mobile Calendar) the p-value is larger than 0.05,

which means that neither method achieved a statistically significant advantage. Looking

across all trials (i.e., summing up all the votes for the two methods), the results show that

participants have preferred the proposed method much more than FJND (268 vs. 92 votes)

with overall p = 0.0001, which is a very statistically significant result. This confirms that

the proposed method is able to provide higher perceptual video quality compared to FJND.
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Table 5.3: Subjective comparison of the proposed video compression method against FJND.

Sequence FJND Proposed p-value

Bus 12 18 0.2733

City 4 26 0.0001

Crew 7 23 0.0035

Foreman 8 22 0.0106

Flower Garden 10 20 0.0679

Hall Monitor 9 21 0.0285

Harbor 11 19 0.1441

Mobile Calendar 10 20 0.0679

Mother & Daughter 4 26 0.0001

Soccer 5 25 0.0003

Stefan 4 26 0.0001

Tempete 8 22 0.0106

Total 92 268 0.0001

5.4 Conclusions

In this chapter, we presented a saliency-aware video compression method in the context of

ROI-based video coding. The proposed method attempts to reduce attention-grabbing cod-

ing artifacts, and further allows the saliency of the encoded video to change in a controlled

manner – increase in ROI and decrease in non-ROI. This is achieved by adding a saliency

distortion term to the distortion metric used in H.264/AVC rate distortion optimization.

The GMC saliency estimation method from Section 4.3 was used to estimate saliency distor-

tion. The results indicate that the proposed method is able to improve the visual quality of

encoded video compared to conventional RDO video coding, as well as two state-of-the-art

perceptually-motivated video coding methods.



Chapter 6

Saliency-Cognizant Video Error

Concealment

Despite ongoing efforts to further advance communication technologies, high quality real-

time video streaming over best-effort, packet-switched networks remains challenging for a

number of reasons. First, consumer demand for interactive streaming video (e.g., conference

video such as Skype, Google Talk, etc.) continues to outpace the rate of increase in network

bandwidth [145], resulting in congestion and packet queue overflows in packet-switched

networks. Second, when packet losses do occur, persistent server-client retransmission is not

practical due to playback constraints – a video packet arriving at decoder past its playback

deadline is essentially useless. Third, new media types such as ultra-high-resolution video

and multiple-view video [146] that promise enhancement of viewing experience are also

further straining resource-limited networks due to their large size. Under these practical

constraints, it is difficult to guarantee error-free delivery of the entire video from sender to

receiver in a timely manner.

Many previous works [147, 148, 149] employed the pro-active methodology of unequal

error protection (UEP) of video data, where important packets are protected more heavily,

for example, using stronger Forward Error Correction (FEC) codes. Typically, more im-

portant packets contain viewer’s probable Regions-of-Interest (ROI) [122] in a video frame,

or regions with higher visual saliency [2], where viewers most likely will focus their visual

attention. In such a scheme, when a packet is lost, the affected region is very likely to be of

low visual saliency. While the loss of high-saliency information is still possible, this is a rare

89
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event compared to the loss of low-saliency information, which is less protected. Instead of

proactive error protection schemes like UEP, in this chapter, we study the complementary

problem of error concealment : given the occasional unavoidable packet loss during network

transmission, causing the loss of a group of macroblocks (MB) in a video frame, how to best

conceal the effect of data loss at the decoder to minimize visual distortion.

Error concealment is typically an under-determined problem: there are insufficient num-

ber of well-defined criteria, such as smoothness conditions for boundary pixels adjacent to

correctly received neighboring blocks [150], to recover all missing MBs perfectly. This makes

choosing the appropriate set of pixels to replace the missing blocks a technically challenging

problem. In this chapter, we propose to add a low-saliency prior to the error concealment

problem as a regularization term. It serves two purposes. First, in ROI-based UEP video

streaming, low-saliency prior is likely the correct side information for the lost block and

helps the client identify the correct replacement block for concealment. Second, in the event

that a perfectly matched block cannot be identified, the low-saliency prior reduces viewer’s

visual attention on the loss-stricken spatial region, resulting in higher overall subjective

quality. At this point, it is appropriate to recall the definition of the word “conceal” from

the Oxford English Dictionary [151], which means to keep from sight; hide; keep (something)

secret; prevent from being known or noticed. In a way, the low-saliency prior tries to make

error concealment live up to its name by attempting to hide damaged blocks from viewers’

attention.

We study the effectiveness of a low-saliency prior in the context of a previously proposed

RECAP error concealment system [152]. RECAP transmits a low-resolution (LR) version

of a video frame alongside the original high-resolution (HR) version, so that if blocks in the

HR version are lost, the correctly-received LR version serves as a template for matching of

suitable replacement blocks from a previously correctly-decoded HR frame. We add a low-

saliency prior to the block identification process, so that only replacement candidate blocks

with good match and low saliency can be selected. To estimate saliency, we employ our

convex approximation to the Itti-Koch-Niebur (IKN) saliency model [2, 67] from Section 4.2.

This makes it possible to formulate low-saliency error concealment as a convex optimization

problem and solve it efficiently using convex optimization techniques. Indeed, the complexity

of the proposed method using the convex saliency approximation can be orders of magnitude

lower compared to our previous concealment method in [1], while the resulting video quality
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is equal or better. Specifically, experimental results show that: i) PSNR of the error-

concealed frames can be increased dramatically – up to 3.6 dB over the original RECAP,

and up to 0.7 dB compared to our earlier method in [1], showing the effectiveness of a

low-saliency prior in the under-determined error concealment problem; and ii) subjective

quality of the repaired video using our proposal, as confirmed by an extensive user study, is

better than the original RECAP.

The outline of the chapter is as follows. We discuss related work in Section 6.1, with an

overview of the RECAP video transmission system [152] and our earlier error concealment

method from [1] in Sections 6.1.1 and 6.1.2, respectively. The new error concealment strategy

with low-saliency prior is presented in Section 6.2.1. In Section 6.2.2 we show how the convex

approximation to IKN saliency from Section 4.2 can be applied to the missing block and its

neighborhood. Finally, experimental results and conclusions are presented in Sections 6.4

and 6.5, respectively.

6.1 Related work

In the last two decades, error resilient video transmission over lossy channels and unreli-

able networks has been studied extensively [147, 148, 149, 153]. One general approach for

recovering lost video data (as well as other kinds of data) is retransmission [153]. Although

retransmission is very effective, it increases transmission latency. For example, a round-trip

time (RTT) of about 200 ms between California and Singapore [152] makes even a single

retransmissions lead to latency that would severely degrade interactivity in applications

such as videoconferencing. It should be mentioned that video streaming is generally able

to tolerate higher latency than videoconferencing, but even streaming clients have finite

playout buffers, which means that the number of possible retransmissions is limited. To

avoid retransmission, another general approach is to use Forward Error Correction (FEC).

A video-specific variant of FEC is Unequal Error Protection (UEP) [154], which provides

stronger protection to more important video data, such as macroblock coding modes and

motion vectors. To handle losses in channels with bursty losses, data interleaving techniques

are typically necessary in both FEC and UEP. However, data interleaving also increases la-

tency [152].



CHAPTER 6. SALIENCY-COGNIZANT VIDEO ERROR CONCEALMENT 92

Another approach to deal with losses in video transmission is decoder-side error con-

cealment. The H.264 video coding standard provides an error resilient feature called Flex-

ible Macroblock Ordering (FMO), which allows macroblocks in slices to be arranged in a

checker-board pattern [155], or other, more advanced, 2-D interleaving patterns [156], for

more effective error concealment. However, such techniques are not effective when an entire

frame is lost. Another technique is Reference Picture Selection (RPS) [153], which can be

used to stop error propagation in video transmission with a reaction time of one RTT. In

RPS, in order to prevent long-term error propagation, the encoder uses only past reference

frames that have been positively acknowledged by the decoder. In [152], a practical solution

for low-latency video communications over lossy networks called RECAP (Receiver Error

Concealment using Acknowledge Preview) was proposed, which improves upon RPS such

that visual quality can be high even when RTT is large. Later in this section, we briefly

describe the RECAP framework, upon which we build our error concealment strategy with

low-saliency prior at the decoder.

In the face of challenging network conditions during real-time video streaming, UEP

strategies protect visually important (salient) regions more heavily. If concealment is done

in a saliency-myopic way, so that the resulting salient features draw attention to the (likely)

imperfectly recovered blocks, it will adversely affect the subjective visual quality. This is one

of the main reasons why we apply the low-saliency prior to the error concealment problem,

so that concealment can be done in a saliency-cognizant manner, resulting in recovered

blocks that do not draw unnecessary attention.

Although we apply our low-saliency prior to the RECAP video transmission system [152]

for concreteness, we believe that low-saliency prior itself has more general applicability to

other ROI-based UEP video streaming systems that may employ other error concealment

tools. For example, in [150], where smoothness condition for boundary pixels is used as one

condition for recovery, low saliency can be an additional requirement to further facilitate

correct block recovery. Note that in our proposed method, we address packet losses in

low-saliency spatial regions because that is the typical case. Packet loss in more heavily

protected highly salient regions, while possible, is a rare case, and hence will not affect

much the average performance of the system, as long as some default concealment scheme

is performed.

Visual saliency—a measure of propensity for drawing visual attention—has been a sub-

ject of intense study in the past decade [2, 157, 85]. While earlier works have applied visual
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Figure 6.1: Overview of RECAP packet loss recovery system.

saliency principles to video compression [67], to the best of our knowledge, we are the first

to apply saliency analysis for error concealment of streaming video. A recent evaluation

of saliency models for gaze prediction in video [92] found that the well-known Itti-Koch-

Niebur (IKN) saliency model [2], enhanced by the temporal features and ‘FancyOne’ feature

integration [67], was the most accurate among the nine methods tested in that study. In

our earlier work on low-saliency error concealment [1], we used the IKN model for saliency

calculation. In this chapter, we utilize our convex approximation to the IKN saliency from

Section 4.2, which allows us to formulate the error concealment problem with low-saliency

prior as a convex optimization problem, leveraging existing polynomial-time convex opti-

mization algorithms for globally optimal solutions. In so doing, as will be shown in Section

6.3 and 6.4, we are able to find far better solutions more computation-efficiently than our

previous work in [1].

6.1.1 RECAP video transmission system

Fig. 6.1 shows an overview of the RECAP video transmission system [152]. The server

compresses HR video into ROI layer and non-ROI layer. Using UEP, the ROI layer is more

heavily protected by stronger FEC than the non-ROI layer. Typically, ROI layer contains

more visually salient objects and accounts for 25% or less of the total area of each frame (to

be discussed in more detail in Section 6.4). Given the relatively small size of the ROI layer,

we will assume it is protected well enough that unrecoverable packet losses, as observed by

the client, take place only in the non-ROI layer.

Along with the encoded HR video, the server also low-pass filters and down-samples HR

frames into LR thumbnails (preview frames) and transmits them with heavy protection. In

practice, the size of a thumbnail is 1/16 (down-sampled by a factor of 4 in both dimensions) of

the size of the HR image, and hence it does not incur much redundant transmission overhead.

For encoding purposes, when there is no loss, the HR video frames are predicted from any

past HR reference frame. However, when a loss is detected, HR video frames are predicted
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only from a positively acknowledged reference frames. In contrast, the LR thumbnails are

always predicted from positively acknowledged LR frames. The key advantage of such

acknowledged thumbnails is that every received thumbnail can be properly decoded.

While data-agnostic FEC suffers from the well-known “cliff” effect, where each block of

FEC-protected source data is either recoverable in its entirety or severely damaged and not

recoverable at all, the thumbnail-based scheme enables a more graceful recovery, where lost

HR video blocks can be partially recovered via block search in previous correctly received

HR reference frame, using the corresponding LR thumbnail as a template. Experimental

results in [152] showed that by transmitting thumbnails, RECAP outperformed FEC-only

schemes. The experimental results in [152] also showed that RECAP outperforms FMO,

especially when all slices in a frame are lost. In fact, the effectiveness of RECAP relies on

three principles [152]. First, as many lost blocks may exist in previously decoded frames

at the decoder, the decoder can exploit the thumbnail frame to search for an appropriate

HR block as a replacement for a missing block. Second, in case an appropriate replacement

block cannot be identified, the decoder can form a coarse reconstruction from the thumbnail

frame. Third, the LR stream does not cost too much overhead as thumbnails are of low

resolution. Also, since the thumbnails are predicted only from acknowledged frames, the

overall reliability of the system is increased.

In this chapter, we employ RECAP as a platform to demonstrate the performance and

effectiveness of our proposed low-saliency prior for video error concealment in loss-corrupted

video streaming. As mentioned before, RECAP is employed only for concreteness, to gen-

erate a number of good candidates to replace a missing block. Our low-saliency prior can

be used in any situation where there is insufficient information to decide among multiple

candidate blocks that could potentially replace a missing block.

6.1.2 Overview of the error concealment method from [1]

In [1], we proposed a saliency-cognizant video error concealment method to study the ef-

fectiveness of a low-saliency prior in the context of error concealment. In that method,

we added a low-saliency prior to the block identification process in RECAP, so that only

replacement candidate blocks with good match and low saliency can be selected. In par-

ticular, we designed and applied four saliency reduction operators iteratively, in order to

reduce the saliency of candidate blocks. These operators were:
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1. A notch filter that suppresses the signal in the normalized frequency range [π/256, π/16];

2. A frequency outlier filter that suppresses large frequency components that are not

present in the neighboring blocks;

3. An intensity and color contrast reduction operator that reduces the contrast (and

therefore also saliency) in the intensity and color channels of the IKN saliency model;

4. A deblocking filter [158], which was observed to often have the effect of reducing the

saliency of the block it is applied to.

These operators were applied on a given RECAP candidate block using the following algo-

rithm:

• Step 1: Set j = 1, where j refers to the index of one the four saliency reduction

operators listed above.

• Step 2: Apply the j-th saliency-reduction operator on the current RECAP block.

• Step 3: Project the result of Step 2 onto the thumbnail block using a project-to-

thumbnail operator to make sure that the low-frequency content of the new candidate

is in good match with the thumbnail block.

• Step 4: Compute the saliency of the new block obtained after Step 3.

• Step 5: Compute a saliency-distortion cost, where the saliency is given by Step 4, and

distortion is obtained by the L2-norm of the difference between the new candidate and

the thumbnail block. If the computed cost is lower than the smallest already-known

saliency-distortion cost, then go to Step 2. Otherwise go to Step 6.

• Step 6: If j < 4, then fetch the original RECAP block again, set j = j + 1, and go

to Step 2. Otherwise end.

The above algorithm was performed on the best K RECAP candidates whose L2-

difference with respect to the thumbnail block was the lowest. In the end, the reconstructed

block whose saliency-distortion cost was the lowest was chosen as the final replacement

block. To compute the saliency of the new block in Step 4, the IKN saliency model was

utilized.
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In the present chapter, we extend this earlier work in two ways. First, the objective

function in the present work is somewhat improved. In the new objective function, we allow

two different weights for the matching to the thumbnail and matching to RECAP candidates.

This enables higher emphasis on low-frequency matching to the thumbnail block, which is

more reliable than RECAP candidate blocks. And second, instead of the IKN model, we

employ our convex approximation to the IKN saliency from Section 4.2, which allows us to

make the objective function convex. With the help of this approximation, we are able to

solve the error concealment problem at a significantly lower computational cost.

6.2 The proposed error concealment method

In this section, we present our proposed video error concealment method. In the sequel,

capital bold letters (e.g., X) denote matrices, lowercase bold letters (e.g., x) denote vectors,

and italic letters (e.g., x or X) represent scalars.

6.2.1 Problem formulation

Consider a video frame F in which some blocks from non-ROI (i.e., low-salient) regions

have been lost. Let X be a lost block of size Nb ×Nb, and N (X) be a w × h window in F,

with w, h ≥ Nb, such that it covers only the available blocks in F (i.e., correctly-decoded

or already-concealed blocks) in the neighborhood of X, as well as the location of X itself.

Let S(N (X)) be a saliency operator that computes the saliency of block X within N (X).

Also, let vec(X) be the vectorization operator that vectorizes its input matrix X in a raster

scan, D be a down-sampling matrix [159], L be a low-pass FIR filter [159], and L̃ be the

high-pass FIR complement of L, i.e. L̃ = I− L, where I is the identity matrix.

Our goal is to reconstruct the missing block X so that the reconstructed block, X̂, has

low saliency after reconstruction. To achieve this goal, we propose the following algorithm,

which is applied on every lost block in F in a raster-scan order:

• Step 1: Apply the RECAP algorithm on the missing block X to obtain the best K

RECAP HR candidates Rk, k = 1, · · · ,K, whose L2 difference with respect to the LR

thumbnail block T is the lowest.

• Step 2: Compute the 2-D DCT of all available spatial neighbors of X. Let Bl be

a matrix whose entry (i, j) is the DCT coefficient (i, j) with the smallest magnitude
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among all available spatial neighboring blocks of X. Similarly, Let Bu be a matrix

whose entry (i, j) is the DCT coefficient (i, j) with the largest magnitude among all

available spatial neighboring blocks of X.

• Step 3: Given a RECAP candidate block Rk, solve the following minimization prob-

lem to obtain the reconstructed block X̂k

X̂k = argmin
X

[
S (N (X)) + λ1 ‖DLvec(X)− vec(T)‖22 + λ2

∥∥∥L̃vec(X)− L̃vec(Rk)
∥∥∥
2

2

]
,

subject to Bl ≤ ΦXΦt ≤ Bu,

(6.1)

where λ1 and λ2 are two positive real scalars, ‖.‖2 denotes the L2-norm, and Φ is the

2-D DCT matrix, which is of the same size as X. The down-sampling factor of D is

set to the same down-sampling factor that is used to generate T, and L is used to

avoid aliasing due to down-sampling.

• Step 4: Repeat Step 3 for all the K RECAP candidates. Select the candidate with

the smallest objective function value (6.1) as the final reconstructed block X̂.

The first term in the objective function in (6.1) measures the saliency of the reconstructed

block within N (X). The minimization of this term ensures that the reconstructed block

has low saliency after reconstruction. At the same time, the constraint defined in (6.1) tries

to eliminate any potential frequency outliers in the reconstructed block by restricting the

frequency content of the reconstructed block to be within the extremes of the frequency

content of its available neighboring blocks. This constraint plays the role of the frequency

outlier filter from our previous approach [1].

The second term of the objective function in (6.1) ensures that the reconstructed block

remains in good match with the thumbnail block, while the third term in (6.1) tries to match

the high-frequency content in the candidate block to that of the RECAP candidate block.

In practice, λ1 should be set to a larger value than λ2. The reason is that the thumbnail

block can be considered as a very reliable side information for the low frequency content of

the missing block, so it makes sense to enforce a very good match to the thumbnail block,

i.e., large λ1. However, the match does not have to be exact, because the thumbnail block

has been quantized and compressed as well, and we do not want to over-fit the low frequency

content of the reconstructed block to the quantized thumbnail.
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Unlike the low-frequency content in the second term in (6.1), we do not have a very

reliable side information for the high-frequency content of the missing block in the third

term in (6.1). All we know comes from the high frequency information of the RECAP

candidate block, which might not be the same as the original high frequency content of the

missing block. Hence, λ2 should be set to a smaller value than λ1. In our experiments,

we used λ1 = 1.5 and λ2 = 0.5. The hope is that saliency consideration will provide

sufficient additional information to reconstruct the high-frequency content of the missing

block reasonably well.

6.2.2 The saliency operator S(N (X))

The error concealment problem formulation in (6.1) involves the saliency operator S(N (X))

that computes the saliency of X within N (X). In our previous work [1], we used the

IKN saliency model as an implementation of S(N (X)). However, this approach has two

disadvantages: (i) it is computationally expensive, as discussed in [103], and (ii) it is non-

convex in X, making it difficult to find the globally optimal solution to (6.1). To solve these

problems, we use our convex approximation to the IKN saliency from Section 4.2. With a

saliency operator S(N (X)) that is convex in X, the optimization problem in (6.1) becomes

convex (the last two terms in the objective function are already convex, as is the constraint),

making it possible to solve (6.1) using a variety methods for convex optimization [160, 161].

As was demonstrated in Section 4.4.1, our convex saliency operator approximates the IKN

saliency very well, yet has an advantage of being simpler to compute and easier to integrate

into various optimization problems.

Equation (4.9) is a convex approximation to the IKN saliency of block X by itself,

regardless of its neighborhood. We now define the operator S(N (X)) that computes the

saliency of X within a neighborhood N (X). Let N (X) be a p×p matrix of pixels in F (with

p > Nb) such that it covers both the Nb × Nb missing block X and parts of the available

8-connected spatial neighbors of X. Hence, the position of N (X) relative to X depends on

the available neighbors of X. In Appendix A, we describe various possible cases for defining

N (X) relative to X. The saliency S(N (X)) is computed as in (4.9), with X replaced by

N (X). Below we show that both the spatial and temporal saliency terms of (4.9) are still

convex in X when X is replaced by N (X).

Let B be a p×p matrix whose elements are all equal to the elements of N (X) except for

the elements whose coordinates coincide with X, which are set to zero. In other words, B is
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a matrix that contains the boundary pixels of N (X) around the missing block X. Fig. 6.2

illustrates X, N (X), and B.

N (X) can be obtained by zero-padding (expanding) X via a matrix expansion opera-

tor, Z(X,N (X)), and adding the resulting matrix to B. The matrix expansion operator,

Z(X,N (X)), zero-pads the Nb×Nb matrix X up to a p×p matrix, Xe, and can be realized

as a linear operation

Xe = Z(X,N (X)) = MXN, (6.2)

where M is a binary matrix of size p × Nb, and N is a binary matrix of size Nb × p, both

of which depend on N (X). The method to derive M and N based on N (X) is given in

Appendix A. Finally, since

N (X) = Xe +B = MXN+B (6.3)

is an affine function of X, it is also convex in X. Due to this, we have that

Sspatial(N (X)) = Sspatial(MXN+B), (6.4)

where Sspatial(·) is computed as in (4.7),

Stemporal(N (X)) = Stemporal(MXN+B), (6.5)

where Stemporal(·) is computed as in (4.8), and

S(N (X)) = Sspatial(N (X)) + αStemporal(N (X)), (6.6)

where α is positive as in (4.9), are all convex in X.

6.2.3 Solving the error concealment problem

By using a saliency operator S(N (X)) that is convex in X, the optimization problem in

equation (6.1) becomes convex. The objective function is the sum of three terms. The first

term is convex in X if the convex saliency operator discussed above is used. The second and

third terms are compositions of vectorization (which is convex [162]), linear filtering, and the

squared L2-norm (which is also convex [161]), making them both convex in X. Finally, the

constraint is a combination of affine functions in X, making it convex in X. Hence, in this

case, a variety of methods for convex optimization [161], such as interior-point, ellipsoid,

subgradient, etc., can be used to solve (6.1). In our expeirments, we used the SeDumi

algorithm available in the cvx Matlab package [163].
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Figure 6.2: An illustration of the missing block X, and matrices N (X) and B. Note that
N (X) covers the missing block X and parts of the available spatial neighbors of X. B is
a matrix that contains the boundary pixels of N (X) around the missing block X (light-
shaded area around X in this figure). Those elements of B whose coordinates coincide with
X are set to zero. The saliency of X is computed within the area covered by N (X). In
this example, it is assumed that all the 8-connected spatial neighbors of X are available.
Depending on the availability of the spatial neighbors of X, the area covered by N (X)
changes, as discussed in Appendix A.

6.3 Computational complexity

In Section 6.3.1, we analyze the computational complexity of solving (6.1) when the convex

saliency operator discussed above is used. Following that, in Section 6.3.2 we compare this

complexity against the complexity of our previous method from [1].

6.3.1 Computational complexity of the proposed method

In this section, we estimate the computational cost of the error concealment method pre-

sented in Section 6.2.1. In the proposed method, the minimization problem defined in (6.1)

is solved for the best K RECAP candidates whose L2 difference with respect to the thumb-

nail block is the lowest. In the end, the best block whose saliency-distortion cost in (6.1) is

the lowest, is taken as the concealed block.

To estimate the computational cost, we need to answer two questions: 1) how many

evaluations of the objective function in (6.1) are needed? and 2) how many operations are

required in each evaluation of the objective function in (6.1)? The first question is difficult

to answer in general. As mentioned in Section 6.2.3, a convex optimization problem can be

solved relatively easily (in polynomial time) by various convex optimization methods such

as interior-point and ellipsoid methods [160, 161]. However, the exact number of objective
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function evaluations is not easily determined. In our experiments we found that usually

about 8 objective function evaluations are needed to achieve an acceptable tolerance level

of ǫ = 10−6 when solving (6.1) for 16 × 16 blocks. Hence, for the purpose of estimating

complexity, we assume that the average number of objective function evaluations in (6.1) is

Ne = 8.

We now compute the number of operations that are performed in one evaluation of the

objective function in (6.1). To find the cost for the first term in (6.1), we need to find

the cost of the saliency operator S(N (X)) defined in (6.6), which involves in computing

Sspatial(N (X)) and Stemporal(N (X)). The first step in computing Sspatial(N (X)) is to con-

struct N (X). In practice, N (X) can be constructed by copying the Nb×Nb block X to the

zero locations of the p× p matrix B (i.e., locations in which the elements of B are zero). To

copy a Nb ×Nb matrix to another place in memory, we need to update the pointer address

of both the source and destination locations after reading/copying each row of the matrix.

To obtain the pointer address of the next row of the matrix, we first need to increase the

current row number by one, and then the convert the 2-D address of the first element of

next row into a linear 1-D address. This needs 3 operations (two additions and one multi-

plication) [164]. Hence, we consider approximately 2 · 3Nb = 6Nb operations for copying a

Nb × Nb matrix to another place in memory. Assuming that B is available before solving

(6.1), copying the X to the zero locations of B needs approximately 6Nb operations.

The next step is to compute the 2-D DCT of N (X). Note that the multiplication of a

A×B matrix by a B ×C matrix requires A ·C · (2B − 1) operations. Also, computing the

2-D DCT of a p× p block requires two p× p matrix multiplications. Hence, computing the

2-D DCT of N (X) requires 2p2(2p − 1) operations. We then need to compute the square

of the Wiener-filtered coefficients. This step needs 2p2 operations. Finally, all the squared

Wiener-filtered coefficients should be summed up together. This step needs approximately

p2 operations. Hence, computing Sspatial(N (X)) in the luma (Y) channel of X requires

approximately 6Nb + p2(4p+ 1) operations. Assuming that X is in YUV 4:2:0 format, the

total computational cost for computing Sspatial(N (X)) will be 1.5(6Nb + p2(4p+ 1)).

To compute Stemporal(N (X)), we first need to compute the absolute difference between

N (X) and the co-located p × p block in the previous frame in the luma (Y) channel. For

this purpose, we need to construct the neighborhood in the previous frame similar to N (X).

This approximately needs 6Nb operations. Note that N (X) is already constructed when

computing Sspatial(N (X)). Thus, this step requires about 6Nb + 2p2 operations, where we
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considered two operations for computing the absolute difference between two elements of

memory. We then need to compute the 2-D DCT of the obtained residual block, which re-

quires 2p2(2p−1) operations. After that we need to compute the sum of the squared Wiener-

filtered coefficients of the residual block, which requires approximately 2p2 + p2 operations.

Hence, computing Stemporal(N (X)) requires approximately 2p2(2p + 3) operations. Based

on the above analysis, computing S(N (X)) requires approximately 9Nb + p2(10p+ 7.5) + 2

operations.

To find the computational cost of the second and third terms in (6.1), we first note that

if the size of X in (6.1) is Nb × Nb, then L and L̃ are both of size N2
b × N2

b , while D (the

down-sampling matrix) is a (N2
b /d

2
s)×N2

b matrix, where ds is the down-sampling factor that

is used to generate the thumbnail block T. To vectorize a Nb×Nb matrix, similar to the case

discussed above for copying a Nb×Nb block to another location in the memory, we consider

about 6Nb operations. Hence, to obtain vec(Rk) or vec(X), we consider approximately 6Nb

operations. Similarly, we approximate the cost for obtaining vec(T) by 6Nb/ds operations.

To compute DLvec(X) for evaluating the second term in (6.1), we can first compute

Lvec(X), which requires N2
b (2N

2
b − 1) operations. We can then multiply D by the resul-

tant N2
b × 1 vector. This requires additional N2

b (2N
2
b − 1)/d2s operations. Hence, in total,

computing DLvec(X) costs N2
b (2N

2
b − 1) +N2

b (2N
2
b − 1)/d2s + 6Nb operations.

As a simpler alternative, however, the low-pass filtering can be performed in the DCT

domain. For this purpose, we first compute the 2-D DCT of X, which needs 2N2
b (2Nb − 1)

operations. We then zero out the desired high frequency coefficients. This process needs

approximately N2
b operations. We then take the inverse 2-D DCT of the obtained result

to get the filtered block in the pixel domain. This step needs 2N2
b (2Nb − 1) additional

operations. Finally, we down-sample the obtained block by a down-sampling factor ds to

get a down-sampled block of the same size as T. We consider N2
b /d

2
s operations for this

step. Finally, the L2-norm of the difference between the obtained low-resolution block and

T must be calculated. This step requires approximately 3N2
b /d

2
s operations. Therefore, in

total, computing the second term of (6.1) in the luma (Y) channel requires approximately

N2
b (8Nb − 3 + 4/d2s) operations.

For computing the third term in (6.1), a similar approach can be utilized. Specifically, we

take the 2-D DCT of both X and Rk, and compute the L2-norm of the difference between

the high frequency coefficients of X and Rk. To compute the L2-norm, only those high

frequency DCT coefficients that are zeroed out when computing the second term of (6.1)
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are utilized. Note that since DCT is a unitary transform, we do not need to take the inverse

2-D DCT to compute the L2-norm difference in the pixel domain. The 2-D DCT of X is

available after computing the second term in (6.1). Thus, we only need to compute the

2-D DCT of Rk, which can be pre-computed before evaluating (6.1). Considering 3N2
b

operations for computing the L2-norm, computing the third term in (6.1) in the luma (Y)

channel requires approximately 3N2
b operations.

In summary, we conclude that computing the second term in (6.1) for all three YUV

4:2:0 channels of X in each evaluation of the objective function requires approximately

1.5 ·(N2
b (8Nb−3+4/d2s) operations. For the third term, the cost is approximately 1.5 ·(3N2

b )

operations.

To evaluate the constraint in (6.1), we need to compare the 2-D DCT of X with both

Bl and Bu. For these two comparisons, we consider 2N2
b operations. The 2-D DCT of X

is computed during the evaluation of the second term in (6.1) as described above. Hence,

assuming that Bl and Bu are pre-computed before solving (6.1), evaluating the constraint

for all three YUV 4:2:0 channels of X requires 1.5 · (2N2
b ) = 3N2

b operations.

Before evaluating (6.1), we need to compute the 2-D DCT of Rk, which requires 1.5 ·
2N2

b · (2Nb − 1) operations. We also need to compute Bl and Bu. Assuming the worst

case (from the point of view of complexity) that all the four spatial neighbors of X are

available, and that none of them are neighbors of any previously concealed blocks (in which

case their 2-D DCT would already be available), we need to compute the 2-D DCT of all

four neighbors. This requires 1.5 · 4 · 2N2
b (2Nb − 1) operations. Assuming that finding the

minimum or maximum of 4 DCT coefficients needs 3 operations, we can estimate the cost

for computing Bl or Bu as 1.5·3N2
b = 4.5N2

b operations. Hence, the total cost for computing

Rk, Bl, and Bu is approximately N2
b (30Nb − 11) operations.

Overall, for the YUV 4:2:0 video format, the total computational cost of the proposed

error concealment method for reconstructing a Nb×Nb block X within a p×p neighborhood
N (X) is approximately

ζ(PM) ≈ N2
b (30Nb − 11) +Ne

(
(9Nb + p2(10p+ 7.5) + 2)+

1.5(N2
b (8Nb − 3 +

4

d2s
)) + 3N2

b

)

= N2
b (30Nb − 11) +Ne

(
12N3

b − 1.5N2
b + 9Nb +

6

d2s
+ 10p3 + 7.5p2 + 2

)
.

(6.7)
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6.3.2 Comparison with the method from [1]

In our experiments, the size of each missing block X is 16 × 16. Therefore, Nb = 16. We

also set ds = 4 and p = 20 so that the window N (X) covers a 20 × 20 region. With these

parameters in (6.7), we get

ζ(PM) ≈ 1175379. (6.8)

Meanwhile, our previous error concealment method from [1] requires the computation

of IKN saliency [67] within an adaptive window of size W0 ×H0 that includes the missing

block and its causal spatial neighborhood. As discussed in [103], the number of operations

required to reconstruct a missing block of size Nb ×Nb pixels by our previous method in [1]

is

ζ(OM) ≈ 36.56N3
b +

(
log2

N6
b

4 + 1104.5
)
N2

b + 5882 ·W0 ·H0. (6.9)

Substituting Nb = 16 we obtain

ζ(OM) ≈ 438133 + 5882 ·W0 ·H0. (6.10)

Note that W0 and H0 can be as small as Nb, the size of the block, or as large as W and

H, the width and height of the frame. The number of operations involved in reconstructing

a block varies depending on the position of that block, which determines W0 and H0 [1].

At the low end, when W0 = H0 = Nb = 16, ζ(PM) ≈ 0.60 · ζ(OM), making the proposed

method roughly 40% less costly than the method from [1]. At the high end, when W0 and

H0 are equal to the dimensions of the frame, then even for a CIF resolution of 352 × 288

(which may be considered small by today’s standards), we obtain ζ(PM) ≈ 0.002 · ζ(OM).

Hence, in this case, the proposed method has only 1/500-th of cost of the method from [1].

In practice, the computational savings will be somewhere between these two extreme values.

To get a feeling for the average case, consider CIF resolution video (352× 288). Assuming

that each block is equally likely to be damaged, the expected (average) position of the

damaged block is at the center of the frame, and the expected values of W0 and H0 are

352/2 = 176 and 288/2 = 144, respectively. Using these values in (6.10) and comparing

the result with ζ(PM), we find ζ(PM) ≈ 0.008 · ζ(OM). That is, the expected cost of the

proposed method in the case of CIF resolution video is about 1/120-th of that in [1].
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6.4 Experimental results

In this section, we evaluate the performance of the saliency-cognizant error concealment

method from Section 6.2.1 by comparing it with the original RECAP algorithm, as well as

our previous error concealment method from [1].

In order to evaluate the performance of the proposed error concealment method, we

used four standard 30 fps sequences: Soccer (704 × 576), RaceHorses (416 × 240), Tractor

(768 × 432), and Crew (704 × 576). All sequences were 250 frames long. RaceHorses was

encoded at 700 kbps, while the other three higher-resolution sequences were encoded at 1400

kbps using the H.264/AVC JM 18.0 reference software [114], with the GOP structure IPPP.

The thumbnail videos were created by down-sampling their corresponding high resolution

(HR) videos by a factor of 4 in each dimension, and were encoded at 10% of the bitrate of

their HR version, using the same encoder structure as their HR version. We set Nb = 16,

p = 20, α = 1, λ1 = 1.5 and λ2 = 0.5.

In order to find the most salient regions (ROIs), we first computed the full IKN saliency

map of each video frame of each sequence. The saliency map of each frame was then

binarized based on the 75-th percentile of the saliency map of that frame. Macroblocks with

saliency above the 75-th percentile threshold were considered as ROIs.

To simulate a video streaming scenario with RECAP as its error control mechanism,

a video frame was selected randomly, and its macroblocks in non-ROI parts were dropped

randomly based on a two-state Gilbert model [165] at two different average loss rates (3%

and 10%) with an average burst loss length of 8. The corrupted frame was then concealed

using the original RECAP algorithm, our previous error concealment method from [1], as

well as our proposed error concealment method from Section 6.2.1. The RECAP method,

as well as the two other error concealment methods, require a correctly-received reference

frame to generate RECAP candidates. This was assumed to be either 5 or 10 frames away.

In practice, the distance between the concealed and reference frame is random. We used 5

and 10 simply as representative test values. This procedure was repeated on about 30% of

the randomly chosen frames from each sequence.

6.4.1 Objective quality assessment

In Table 6.1, we compared the performance of the proposed error concealment method

with the RECAP method and our earlier error concealment method from [1] at 3% loss
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Table 6.1: Comparing the proposed error concealment method with RECAP and [1], using
various image/video quality assessment methods, at 3% loss rate, and at two reference frame
distances: d = 10 and d = 5.

Soccer RaceHorses
d Metric RECAP [1] Proposed RECAP [1] Proposed

PSNR 34.6 35.3 35.5 37.6 38.0 38.2
10 SSIM 0.943254 0.944754 0.946126 0.978554 0.979591 0.980300

VQM 0.204069 0.161319 0.157103 0.088587 0.081535 0.080902
PSNR 35.7 36.1 36.2 38.3 38.5 38.9

5 SSIM 0.955522 0.956073 0.956709 0.990184 0.992794 0.993050
VQM 0.168544 0.153910 0.139484 0.077677 0.077879 0.077382

Tractor Crew
d Metric RECAP [1] Proposed RECAP [1] Proposed

PSNR 32.4 33.8 34.2 35.1 38.2 38.4
10 SSIM 0.930999 0.940424 0.943242 0.956591 0.969242 0.970139

VQM 0.170746 0.139316 0.138356 0.217980 0.148807 0.148376
PSNR 34.2 34.3 35.0 36.5 38.6 38.9

5 SSIM 0.973539 0.981457 0.982164 0.965405 0.972251 0.973920
VQM 0.125716 0.126531 0.125092 0.185925 0.137344 0.136188

Table 6.2: Comparing the proposed error concealment method with RECAP and [1] based
on various image/video quality assessment methods, at 10% loss rate, and at two different
reference frame distances: d = 10 and d = 5.

Soccer RaceHorses
d Metric RECAP [1] Proposed RECAP [1] Proposed

PSNR 30.1 31.0 31.2 28.5 28.9 29.1
10 SSIM 0.847758 0.854268 0.855404 0.857703 0.863775 0.866455

VQM 0.413155 0.339648 0.313936 0.326603 0.264199 0.240614
PSNR 31.1 31.5 31.6 29.1 29.5 29.7

5 SSIM 0.874573 0.875573 0.876853 0.878562 0.883668 0.885283
VQM 0.366916 0.315949 0.305230 0.276700 0.238212 0.235563

Tractor Crew
d Metric RECAP [1] Proposed RECAP [1] Proposed

PSNR 27.2 28.9 29.0 29.8 33.2 33.4
10 SSIM 0.790720 0.822753 0.822901 0.867791 0.904089 0.904329

VQM 0.271512 0.225952 0.223710 0.363882 0.292193 0.253789
PSNR 30.0 30.4 30.5 31.1 33.3 33.6

5 SSIM 0.905805 0.906624 0.910247 0.890988 0.908552 0.910276
VQM 0.248732 0.220100 0.203267 0.320792 0.261871 0.241848
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rate, and at two reference frame distances, d = 5 and d = 10, based on three metrics:

PSNR, SSIM [126], and VQM [140, 141]. These frame-level metrics were computed at the

aforementioned average loss rates on the concealed frames. The general VQM model [140]

was utilized for computing the VQM values. Only the luma (Y) channel was considered for

computing the PSNR and SSIM values. Table 6.2 shows the results for the same comparison

as in Table 6.1 but at an average loss rate of 10%.

As seen from Table 6.1 and Table 6.2, the proposed method is able to improve the PSNR

of the concealed frames by up to 3.6 dB compared to RECAP (Crew with d = 10 at 10%

loss rate), and by up to 0.7 dB compared to our earlier method from [1] (Tractor with d = 5

at 3% loss rate). This shows that the proposed error concealment method is able to provide

correct side information for resolving the ambiguity in reconstructing the missing blocks

in the under-determined problem of error concealment. As seen from the SSIM and VQM

results, the proposed error concealment method provides better quality than the RECAP

method. Note that the smaller the VQM value, the better the quality. We also note that

the objective quality of the proposed error concealment method as measured by the SSIM

and VQM metrics is close to or better than our earlier method from [1].

The results demonstrate that even though our earlier method in [1] used the actual IKN

saliency while the method proposed here uses only an approximation, we are able to improve

upon the results from [1]. This is because the present error concealment formulation in (6.1)

allows for direct search for the missing block X, whereas in [1], the concealment proceeded

indirectly by applying saliency reduction operators, in an iterative fashion, upon RECAP

candidate blocks. This, combined with the non-convexity of the objective function from [1],

made the algorithm in [1] susceptible to getting stuck in a local optimum. The present

algorithm does not have that problem, and it is computationally more efficient.

6.4.2 Subjective evaluation

Since the proposed error concealment method aims at reducing the saliency of concealed

blocks, we performed a subjective test to verify the improvement in subjective quality. For

this purpose, we compared the subjective quality of the proposed error concealment method

with RECAP, as well as our earlier method from [1].

In our experiment, a Two Alternative Forced Choice (2AFC) method [142] was used

to compare subjective video quality. In 2AFC, the participant is asked to make a choice

between two alternatives, in this case, the proposed method vs. either the original RECAP
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method or our earlier method [1]. This way of comparing quality is less susceptible to

measurement noise than quality ratings based on scale, such as Mean Opinion Score (MOS)

and Double Stimulus Continuous Quality Scale (DSCQS) [143], because participant’s task

is much simpler than mapping quality to a number on the scale.

Four test sequences mentioned above, at two loss rates (3% and 10%) were used in the

experiment. In each trial, participants were looking at two side-by-side videos (in the same

vertical position, separated by 1 cm horizontally) on a mid-gray background. Each video

pair was shown for 9 seconds. After this presentation, a mid-gray blank screen was shown

for 5 seconds. During this period, participants were asked to indicate on an answer sheet,

which of the two videos looks better (Left or Right). They were asked to answer either

Left or Right for each video pair, regardless of how certain they were of their response.

Participants did not know which video was obtained by the proposed method and which

one was obtained by the alternative method (RECAP or [1]). Randomly chosen half of the

trials had the video produced by the proposed method on the left side of the screen and the

other half on the right side, in order to counteract side bias in the responses. This gave a

total of 4 · 2 · 2 = 16 trials for comparing the proposed error concealment method with each

of the alternative methods.

The experiment was run in a quiet room with 15 participants (11 male, 4 female, aged

between 18 and 30). All participants had normal or corrected to normal vision. A 22-inch

Dell monitor with brightness 300 cd/m2 and resolution 1680× 1050 pixels was used in our

experiments. The brightness and contrast of the monitor were set to 75%. The actual height

of the displayed videos on the screen was 185 millimeters. The illumination in the room was

in the range 280-300 Lux. The distance between the monitor and the subjects was fixed at

80 cm. Each participant was familiarized with the task before the start of the experiment

via a short printed instruction sheet. The total length of the experiment for each participant

was approximately 8 minutes.

The results for the comparison between the RECAP method and our proposed error

concealment method are shown in Tables 6.3 and 6.4. In Table 6.3 we show the number of

responses that showed preference for the original RECAP method vs. the proposed method,

and in Table 6.4 we show the votes for the method from [1] vs. the proposed one.

To test for statistical significance, we used a two-sided χ2-test [144], with the null hy-

pothesis that there is no preference for either method, i.e., that the votes for each method

come from distributions with equal means. Under this hypothesis, the expected number of
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Table 6.3: Subjective comparison of the proposed method against RECAP.

Loss Rate Method Crew Soccer Tractor RaceHorses
RECAP 2 6 6 3

3% Proposed 28 24 24 27
p-value 0.0001 0.0010 0.0010 0.0001
RECAP 1 5 8 4

10% Proposed 29 25 22 26
p-value 0.0001 0.0003 0.0106 0.0001

Table 6.4: Subjective comparison of the proposed method against the method from [1].

Loss Rate Method Crew Soccer Tractor RaceHorses
[1] 11 9 10 12

3% Proposed 19 21 20 18
p-value 0.1441 0.0285 0.0679 0.2733

[1] 17 10 16 14
10% Proposed 13 20 14 16

p-value 0.4652 0.0679 0.7150 0.7150

votes is 15 for each method under study. The p-value [144] of the test is indicated in the

two tables. As a rule of thumb, the null hypothesis is rejected when p < 0.05. When this

happens in Table 6.3 or 6.4, it means that the two methods under the comparison cannot be

considered to have the same subjective quality, since one of them has obtained a statistically

significantly higher number of votes, and therefore seems to have better quality.

In all of the 16 trials in Table 6.3 we have p < 0.05, which indicates that subjects showed

a statistically significant preference for the proposed method vs. RECAP. Looking across all

trials (i.e., summing up all the votes for the two options), the results show that participants

have preferred the proposed method much more than RECAP (205 vs. 35 votes) with overall

p = 0.0001, which is a very statistically significant result. This confirms that the proposed

method is able to improve the perceptual quality of the concealed frames compared to the

original RECAP method.

In Table 6.4, in all of the 16 trials except for one (Soccer at 3%) we have p > 0.05.

This indicates that the subjective quality of the proposed error concealment method is

statistically indistinguishable from our earlier method in [1] at the significance level p = 0.05

on all videos except for Soccer at 3% loss rate, where the result is significant in favor of the

proposed method.
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Fig. 6.3 shows a frame from the sequence Crew concealed by the three methods (RE-

CAP, [1], and the proposed) based on a reference frame that is 10 frames away. One can

easily see that our new method is able to improve the visual quality of the concealed frames

compared to RECAP method, while the differences between the frames produced by the

newly proposed method and that in [1] are harder to see. Indeed, this is to be expected, since

both methods operate on similar principles by trying to reduce the saliency of concealed

blocks.

6.5 Conclusions

Error concealment in loss-corrupted streaming video is a challenging under-determined prob-

lem. In the method described in this chapter, we add a low-saliency prior as a regularization

term to the replacement block search problem. Low saliency provides the correct side infor-

mation in ROI-based UEP video streaming systems for client to identify correct replacement

blocks for concealment. Also, low saliency reduces viewer’s visual attention on the loss-

stricken regions. Incorporated into a previously proposed RECAP error concealment setup,

our experimental results show that our method can clearly improve the visual quality of the

loss-corrupted frames both objectively (up to 3.6 dB in PSNR) and subjectively. Moreover,

incorporating the newly-developed convex approximation to visual saliency into the error

concealment process results in expected complexity reduction of two orders of magnitude

for CIF resolution video, while at the same time providing a gain of up to 0.7 dB in PSNR

compared to an earlier version of the algorithm. Although we utilized RECAP as a plat-

form to demonstrate the performance and effectiveness of our proposed low-saliency prior

for video error concealment, other concealment methods can also benefit from the notion

of a low-saliency prior. In fact, the low-saliency prior can be utilized by any video error

concealment method that can offer multiple candidates for reconstructing missing blocks so

as to reduce the ambiguity in the selection of correct blocks.
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(a) (b)

(c) (d)

Figure 6.3: A frame from Crew : (a) original frame (b) the frame reconstructed by RECAP
(PSNR = 34.3 dB) (c) the frame reconstructed by the method from [1] (PSNR = 36.6 dB)
(d) the frame reconstructed by the proposed method (PSNR = 36.8 dB).



Chapter 7

Conclusions and Future Directions

7.1 Summary of contributions

In this dissertation, we presented various novel methods for utilizing visual saliency in

the context of video compression and transmission. Specifically, we presented two novel

computationally-efficient saliency estimation methods inspired by the well-known IKN saliency

model. The first method is a convex approximation to the IKN saliency model, consisting of

a spatial and a temporal component. Its spatial component can be used to estimate visual

saliency in static images, while the two components together can be used to estimate the

saliency in video. The computational cost of the spatial component is about 1/11-th of the

complexity of the IKN model for images, while the combined complexity of the spatial and

temporal components is about 1/9-th of that of the IKN model for video. The convexity

of this approximation makes it very attractive to incorporate within various optimization

procedures in image and video processing.

The second proposed saliency estimation method uses the spatial component from the

convex approximation mentioned above, but improves temporal saliency estimation via

global motion compensation. Overall, this method is not convex, but is more accurate than

the IKN saliency model on certain sequences with camera motion. This method uses mo-

tion vectors to accomplish global motion compensation and subsequently temporal saliency

estimation, so it can be very attractive for video compression applications where motion

vectors are readily available. The complexity of this method is about 1/6-th of that of the

IKN model for video.
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During the course of this research, we also developed an eye-tracking dataset for a num-

ber of standard video sequences that are commonly used in the field of video compression and

transmission. This dataset is publicly available online, and can be utilized for benchmark-

ing and evaluation of visual saliency models and perceptually-motivated video processing

algorithms as well as video quality assessment methods.

In the context of video compression, we presented a novel saliency-aware video com-

pression method within a region-of-interest (ROI) video coding framework. In ROI-based

video coding, ROIs are encoded with higher quality compared to non-ROIs. Hence, various

coding artifacts may be produced in non-ROI parts, especially at low bit rates. Such cod-

ing artifacts may become attention-grabbing (visually salient), and draw viewer’s attention

away from ROI parts. This may degrade the perceived video quality as the visual quality in

non-ROI parts is lower. The proposed saliency-aware video compression method attempts

to reduce such attention-grabbing coding artifacts in non-ROI parts so as to keep viewer’s

attention on ROI parts. At the same time, the proposed method allows saliency to increase

in high quality ROI parts of the frame, and decrease in non-ROI parts. It was demon-

strated that the proposed method achieves higher video quality compared to conventional

rate-distortion optimization, as well as two recent psychovisually-motivated video coding

methods from the literature.

In the context of video transmission, we presented a novel saliency-cognizant video error

concealment method for ROI-based video streaming. In ROI-based transmission, ROIs are

protected more heavily than non-ROI parts, for example, using stronger channel codes. This

way, if errors or losses occur during transmission, the affected regions will most likely be

from non-ROI parts, and so they will be of low visual saliency. Hence, the reconstruction of

the corrupted regions should be such that they end up with low visual saliency after error

concealment; otherwise, if their saliency increases, they may grab viewer’s attention and

thereby degrade visual quality. To achieve this goal, we added a low saliency prior to the

under-determined problem of error concealment. Such a prior serves two purposes. First,

in ROI-based video streaming, low-saliency prior is likely the correct side information for

reconstructing the lost block and helps the client identify the correct replacement block

for concealment. Second, in the event that a perfectly matched block cannot be identified,

the low-saliency prior reduces viewer’s visual attention on the reconstructed region, and so

the overall subjective quality of the reconstructed frame is increased. It was shown that

this strategy leads to improved video quality of concealed frames, both objectively and
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subjectively.

7.2 Future directions

Having summarized the contributions of this dissertation, we now outline several possible

directions for future research.

In our proposed global motion-compensated saliency detection method we used a global

motion compensation process to obtain the motion saliency of a video frame. The employed

global motion compensation method uses only the motion vectors of the video frame. Better

results, however, can be achieved if more compressed-domain information such as block

coding (partition) mode is used for global motion compensation [166]. In particular, a

motion segmentation and object tracking approach like the recent method proposed in [166]

can be used to dynamically track foreground objects across different frames. The method

in [166] uses both motion vectors and block coding modes to segment and track foreground

objects by the help of a spatio-temporal Markov Random Field (ST-MRF) model. Hence,

as a future work, we can use a method like [166] to improve our proposed GMC saliency

detection method as well as our proposed saliency-aware video compression method.

In our proposed saliency-aware video compression method, we combined a saliency dis-

tortion term with the conventional MSE distortion metric. As a possible future work, the

conventional MSE distortion metric can be replaced by a more perceptually-relevant distor-

tion metric such as SSIM to achieve even better results. For instance, the reduced-reference

SSIM estimation method proposed in [130] can be utilized in conjunction with the proposed

saliency distortion metric to achieve better perceptual quality in video compression. Also,

in Section 5.2.2, we set the saliency-related Lagrange multiplier λSi
based on (5.9) to either

zero, or an experimentally determined value of 1.5. However, further adaptation of this La-

grange multiplier can be introduced based on the saliency of each macroblock. For example,

the value of λS can be increased in ROI parts to emphasize the effect of saliency distortion

in these regions.

Our proposed saliency-cognizant error concealment method attempts to reduce the

saliency of the reconstructed regions in non-ROI parts of the frame so that the visual atten-

tion is not directed towards the reconstructed regions. As a future direction for improving

our proposed saliency-cognizant error concealment method, an efficient method can be de-

signed to deliberately increase the saliency of ROI parts of the frame after performing the
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proposed error concealment method to make sure that the visual attention is directed away

from the reconstructed regions as much as possible. For instance, the attention-guiding

method from [167] can be utilized to further increase the visual saliency of ROI parts of the

video frame. In particular, the saliency adjustment can be performed in such a way that

the objective or perceptual quality of the manipulated ROI parts is not degraded too much.

This can possibly be achieved by adding a distortion metric (e.g., MSE or SSIM) to the

saliency adjustment process as a regularization term so that a trade off between the amount

of saliency change and objective/subjective quality can be made.

We hope that the proposed methods and future directions can enlighten the future

research in this increasingly attractive field.
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Appendix A

Various Cases For N (X)

In Section 6.2.2, we introduced a matrix expansion operator Z(X,N (X)) for expanding

a Nb × Nb matrix X to a p × p matrix Xe by zero-padding it based on the p × p spatial

neighborhood N (X). As we mentioned in Section 6.2.2, Z(X,N (X)) can be realized by a

linear transformation as follows:

Xe = Z(X,N (X)) = MXN, (A.1)

where M is a binary matrix of size p×Nb and N is a binary matrix of size Nb × p. In this

appendix, we derive M and N so that Z(X,N (X)) can be utilized in our error concealment

methodology in Section 6.2.1.

Note that in our error concealment method, missing blocks are reconstructed in a raster-

scan order. Hence, the causal neighbors of all missing blocks will always be available. How-

ever, the anti-causal neighbors of the missing blocks may be missing. Therefore, depending

on the availability of the anti-causal neighbors of the missing block in a 8-connected neigh-

borhood, we may encounter one of the cases depicted in Fig. A.1. For each of these cases,

we obtain a different M and N as follows:

• Case 1 in Fig. A.1 shows the situation in which all the 8-connected neighbors of

the current block are available, and we want to expand the current block X by zero-

padding it from all sides. In this case, M and N are defined as follows

M =




[0] (p−Nb)

2
×Nb

[I]Nb×Nb

[0] (p−Nb)

2
×Nb




p×Nb

,N = Mt, (A.2)

117



APPENDIX A. 118

Figure A.1: In the proposed error concealment method, depending on the availability of the
neighbors of a missing block, various situations may arise. In this figure, the missing block
has been depicted by a gray box while its available neighbors have been depicted by white
boxes. The available neighbors of the missing block X are used to define N (X).

where [0]x×y denotes a x × y matrix whose elements are all zero, and [I]x×y denotes

the identity matrix of size x× y.

• Case 2 in Fig. A.1 shows the situation in which only the causal 8-connected neighbors

of the current block X are available, and we want to expand the current block by

zero-padding it from the top and left. In this case, M and N are defined as follows

M =

(
[0](p−Nb)×Nb

[I]Nb×Nb

)

p×Nb

,N = Mt. (A.3)

• Case 3 in Fig. A.1 shows the situation in which all the 8-connected neighbors of the

current block X are available except for one or more of its neighbors from below, and

we want to expand the current block by zero-padding it from the left, top, and right.

In this case, M and N are defined as follows

M =

(
[0](p−Nb)×Nb

[I]Nb×Nb

)

p×Nb

, (A.4)

N =
(
[0]

Nb×
(p−Nb)

2

[I]Nb×Nb
[0]

Nb×
(p−Nb)

2

)
Nb×p

. (A.5)
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• Case 4 in Fig. A.1 shows the situation in which all 8-connected neighbors of the

current block are available except for one or more of its 8-connected neighbors to the

right, and we want to expand the current block X by zero-padding it from the left,

top, and bottom. In this case, M and N are defined as follows

M =




[0] (p−Nb)

2
×Nb

[I]Nb×Nb

[0] (p−Nb)

2
×Nb




p×Nb

, (A.6)

N =
(
[0]Nb×(p−Nb) [I]Nb×Nb

)
Nb×p

. (A.7)

• Case 5 in Fig. A.1 shows the situation in which the current block is on the left

boundary of the frame and all of its 8-connected neighbors are available, and we want

to expand the current block by zero-padding it from all sides except left. In this case,

M and N are defined as follows

M =




[0] (p−Nb)

2
×Nb

[I]Nb×Nb

[0] (p−Nb)

2
×Nb




p×Nb

, (A.8)

N =
(
[I]Nb×Nb

[0]Nb×(p−Nb)

)
Nb×p

. (A.9)

• Case 6 in Fig. A.1 shows the situation in which the current block is at the top-right

corner of the frame and all of its 8-connected neighbors are available, and we want to

expand the current block by zero-padding it from the left and bottom. In this case,

M and N are defined as follows

M =

(
[I]Nb×Nb

[0](p−Nb)×Nb

)

p×Nb

, (A.10)

N =
(
[0]Nb×(p−Nb) [I]Nb×Nb

)
Nb×p

. (A.11)
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• Case 7 in Fig. A.1 shows the situation in which the current block is at the top-left

corner of the frame and all of its 8-connected neighbors are available, and we want to

expand the current block by zero-padding it from the right and bottom. In this case,

M and N are defined as follows

M =

(
[I]Nb×Nb

[0](p−Nb)×Nb

)

p×Nb

, (A.12)

N =
(
[I]Nb×Nb

[0]Nb×(p−Nb)

)
Nb×p

. (A.13)

• Case 8 in Fig. A.1 shows the situation in which the current block is at the bottom-left

corner of the frame and all of its 8-connected neighbors are available, and we want to

expand the current block by zero-padding it from the top and right. In this case, M

and N are defined as follows

M =

(
[0](p−Nb)×Nb

[I]Nb×Nb

)

p×Nb

, (A.14)

N =
(
[I]Nb×Nb

[0]Nb×(p−Nb)

)
Nb×p

. (A.15)

• Case 9 in Fig. A.1 shows the situation in which the current block in on the top

boundary of the frame and all of its 8-connected neighbors are available, and we want

to expand the current block by zero-padding it from all sides except the top. In this

case, M and N are defined as follows

M =

(
[I]Nb×Nb

[0](p−Nb)×Nb

)

p×Nb

, (A.16)

N =
(
[0]

Nb×
(p−Nb)

2

[I]Nb×Nb
[0]

Nb×
(p−Nb)

2

)
Nb×p

. (A.17)

For all other possible cases, we assume that N (X) covers only X, and so we set both M

and N to Nb ×Nb identity matrices.
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