2,013 research outputs found

    Deep HMResNet Model for Human Activity-Aware Robotic Systems

    Full text link
    Endowing the robotic systems with cognitive capabilities for recognizing daily activities of humans is an important challenge, which requires sophisticated and novel approaches. Most of the proposed approaches explore pattern recognition techniques which are generally based on hand-crafted features or learned features. In this paper, a novel Hierarchal Multichannel Deep Residual Network (HMResNet) model is proposed for robotic systems to recognize daily human activities in the ambient environments. The introduced model is comprised of multilevel fusion layers. The proposed Multichannel 1D Deep Residual Network model is, at the features level, combined with a Bottleneck MLP neural network to automatically extract robust features regardless of the hardware configuration and, at the decision level, is fully connected with an MLP neural network to recognize daily human activities. Empirical experiments on real-world datasets and an online demonstration are used for validating the proposed model. Results demonstrated that the proposed model outperforms the baseline models in daily human activity recognition.Comment: Presented at AI-HRI AAAI-FSS, 2018 (arXiv:1809.06606

    Multisensor Data Fusion for Human Activities Classification and Fall Detection

    Get PDF
    Significant research exists on the use of wearable sensors in the context of assisted living for activities recognition and fall detection, whereas radar sensors have been studied only recently in this domain. This paper approaches the performance limitation of using individual sensors, especially for classification of similar activities, by implementing information fusion of features extracted from experimental data collected by different sensors, namely a tri-axial accelerometer, a micro-Doppler radar, and a depth camera. Preliminary results confirm that combining information from heterogeneous sensors improves the overall performance of the system. The classification accuracy attained by means of this fusion approach improves by 11.2% compared to radar-only use, and by 16.9% compared to the accelerometer. Furthermore, adding features extracted from a RGB-D Kinect sensor, the overall classification accuracy increases up to 91.3%

    Anticipatory Mobile Computing: A Survey of the State of the Art and Research Challenges

    Get PDF
    Today's mobile phones are far from mere communication devices they were ten years ago. Equipped with sophisticated sensors and advanced computing hardware, phones can be used to infer users' location, activity, social setting and more. As devices become increasingly intelligent, their capabilities evolve beyond inferring context to predicting it, and then reasoning and acting upon the predicted context. This article provides an overview of the current state of the art in mobile sensing and context prediction paving the way for full-fledged anticipatory mobile computing. We present a survey of phenomena that mobile phones can infer and predict, and offer a description of machine learning techniques used for such predictions. We then discuss proactive decision making and decision delivery via the user-device feedback loop. Finally, we discuss the challenges and opportunities of anticipatory mobile computing.Comment: 29 pages, 5 figure

    Instructor Activity Recognition Using Smartwatch and Smartphone Sensors

    Get PDF
    During a classroom session, an instructor performs several activities, such as writing on the board, speaking to the students, gestures to explain a concept. A record of the time spent in each of these activities could be valuable information for the instructors to virtually observe their own style of instruction. It can help in identifying activities that engage the students more, thereby enhancing teaching effectiveness and efficiency. In this work, we present a preliminary study on profiling multiple activities of an instructor in the classroom using smartwatch and smartphone sensor data. We use 2 benchmark datasets to test out the feasibility of classifying the activities. Comparing multiple machine learning techniques, we finally propose a hybrid deep recurrent neural network based approach that performs better than the other techniques
    corecore