11,946 research outputs found

    Competition between crystalline electric field singlet and itinerant states of f electrons

    Full text link
    A new kind of phase transition is proposed for lattice fermion systems with simplified f^2 configurations at each site. The free energy of the model is computed in the mean-field approximation for both the itinerant state with the Kondo screening, and a localized state with the crystalline electric field (CEF) singlet at each site. The presence of a first-order phase transition is demonstrated in which the itinerant state changes into the localized state toward lower temperatures. In the half-filled case, the insulating state at high temperatures changes into a metallic state, in marked contrast with the Mott transition in the Hubbard model. For comparison, corresponding states are discussed for the two-impurity Kondo system with f^1 configuration at each site.Comment: 10 pages LaTeX , 2 eps figures Accepted for publication in Z.Phys.

    Intransitivity in Theory and in the Real World

    Full text link
    This work considers reasons for and implications of discarding the assumption of transitivity, which (transitivity) is the fundamental postulate in the utility theory of Von Neumann and Morgenstern, the adiabatic accessibility principle of Caratheodory and most other theories related to preferences or competition. The examples of intransitivity are drawn from different fields, such as law, biology, game theory, economics and competitive evolutionary dynamic. This work is intended as a common platform that allows us to discuss intransitivity in the context of different disciplines. The basic concepts and terms that are needed for consistent treatment of intransitivity in various applications are presented and analysed in a unified manner. The analysis points out conditions that necessitate appearance of intransitivity, such as multiplicity of preference criteria and imperfect (i.e. approximate) discrimination of different cases. The present work observes that with increasing presence and strength of intransitivity, thermodynamics gradually fades away leaving space for more general kinetic considerations. Intransitivity in competitive systems is linked to complex phenomena that would be difficult or impossible to explain on the basis of transitive assumptions. Human preferences that seem irrational from the perspective of the conventional utility theory, become perfectly logical in the intransitive and relativistic framework suggested here. The example of competitive simulations for the risk/benefit dilemma demonstrates the significance of intransitivity in cyclic behaviour and abrupt changes in the system. The evolutionary intransitivity parameter, which is introduced in the Appendix, is a general measure of intransitivity, which is particularly useful in evolving competitive systems. Quantum preferences are also considered in the Appendix.Comment: 44 pages, 14 figures, 47 references, 6 appendice

    Competition between Hund's coupling and Kondo effect in a one-dimensional extended periodic Anderson model

    Get PDF
    We study the ground-state properties of an extended periodic Anderson model to understand the role of Hund's coupling between localized and itinerant electrons using the density-matrix renormalization group algorithm. By calculating the von Neumann entropies we show that two phase transitions occur and two new phases appear as the hybridization is increased in the symmetric half-filled case due to the competition between Kondo-effect and Hund's coupling. In the intermediate phase, which is bounded by two critical points, we found a dimerized ground state, while in the other spatially homogeneous phases the ground state is Haldane-like and Kondo-singlet-like, respectively. We also determine the entanglement spectrum and the entanglement diagram of the system by calculating the mutual information thereby clarifying the structure of each phase.Comment: 9 pages, 9 figures, revised version, accepted for publication in PR
    • …
    corecore