1,415 research outputs found

    Entropic Lattice Boltzmann Method for Moving and Deforming Geometries in Three Dimensions

    Full text link
    Entropic lattice Boltzmann methods have been developed to alleviate intrinsic stability issues of lattice Boltzmann models for under-resolved simulations. Its reliability in combination with moving objects was established for various laminar benchmark flows in two dimensions in our previous work Dorschner et al. [11] as well as for three dimensional one-way coupled simulations of engine-type geometries in Dorschner et al. [12] for flat moving walls. The present contribution aims to fully exploit the advantages of entropic lattice Boltzmann models in terms of stability and accuracy and extends the methodology to three-dimensional cases including two-way coupling between fluid and structure, turbulence and deformable meshes. To cover this wide range of applications, the classical benchmark of a sedimenting sphere is chosen first to validate the general two-way coupling algorithm. Increasing the complexity, we subsequently consider the simulation of a plunging SD7003 airfoil at a Reynolds number of Re = 40000 and finally, to access the model's performance for deforming meshes, we conduct a two-way coupled simulation of a self-propelled anguilliform swimmer. These simulations confirm the viability of the new fluid-structure interaction lattice Boltzmann algorithm to simulate flows of engineering relevance.Comment: submitted to Journal of Computational Physic

    Modeling incompressible thermal flows using a central-moment-based lattice Boltzmann method

    Get PDF
    In this paper, a central-moment-based lattice Boltzmann (CLB) method for incompressible thermal flows is proposed. In the method, the incompressible Navier-Stokes equations and the convection-diffusion equation for the temperature field are sloved separately by two different CLB equations. Through the Chapman-Enskog analysis, the macroscopic governing equations for incompressible thermal flows can be reproduced. For the flow field, the tedious implementation for CLB method is simplified by using the shift matrix with a simplified central-moment set, and the consistent forcing scheme is adopted to incorporate forcing effects. Compared with several D2Q5 multiple-relaxation-time (MRT) lattice Boltzmann methods for the temperature equation, the proposed method is shown to be better Galilean invariant through measuring the thermal diffusivities on a moving reference frame. Thus a higher Mach number can be used for convection flows, which decreases the computational load significantly. Numerical simulations for several typical problems confirm the accuracy, efficiency, and stability of the present method. The grid convergence tests indicate that the proposed CLB method for incompressible thermal flows is of second-order accuracy in space

    A numerical tool for the study of the hydrodynamic recovery of the Lattice Boltzmann Method

    Get PDF
    We investigate the hydrodynamic recovery of Lattice Boltzmann Method (LBM) by analyzing exact balance relations for energy and enstrophy derived from averaging the equations of motion on sub-volumes of different sizes. In the context of 2D isotropic homogeneous turbulence, we first validate this approach on decaying turbulence by comparing the hydrodynamic recovery of an ensemble of LBM simulations against the one of an ensemble of Pseudo-Spectral (PS) simulations. We then conduct a benchmark of LBM simulations of forced turbulence with increasing Reynolds number by varying the input relaxation times of LBM. This approach can be extended to the study of implicit subgrid-scale (SGS) models, thus offering a promising route to quantify the implicit SGS models implied by existing stabilization techniques within the LBM framework
    • …
    corecore