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aDipartimento di Fisica and INFN, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Roma,
Italy

bDepartment of Applied Physics and Department of Mathematics and Computer Science, Eindhoven University of
Technology, 5612 AZ Eindhoven, Netherlands

cChair of Applied Mathematics and Numerical Analysis, Bergische Universität Wuppertal, Gaußstrasse 20, 42119
Wuppertal, Germany

Abstract

We investigate the hydrodynamic recovery of Lattice Boltzmann Method (LBM) by analyzing

exact balance relations for energy and enstrophy derived from averaging the equations of motion

on sub-volumes of different sizes. In the context of 2D isotropic homogeneous turbulence, we

first validate this approach on decaying turbulence by comparing the hydrodynamic recovery of an

ensemble of LBM simulations against the one of an ensemble of Pseudo-Spectral (PS) simulations.

We then conduct a benchmark of LBM simulations of forced turbulence with increasing Reynolds

number by varying the input relaxation times of LBM. This approach can be extended to the study

of implicit subgrid-scale (SGS) models, thus offering a promising route to quantify the implicit

SGS models implied by existing stabilization techniques within the LBM framework.

Keywords: Lattice Boltzmann Method, Hydrodynamics, Turbulence modeling

1. Introduction

The simulation of turbulent flows pertains to a vast diversity of applications in engineering [1].

The high Reynolds number associated with the phenomenon of turbulence requires solving a wide

range of scales on a high resolution computational grid, making their Direct Numerical Simulation

1Postprint version of the article published on Computers & Fluids 172 (2018) 241-250
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(DNS) typically out of reach [2, 3]. Large-Eddy Simulation (LES) is a workaround which allows

a reduction of the number of degrees of freedom. LES is acknowledged in the engineering com-

munity as a cost-effective alternative to DNS [4, 5, 6]. The principle of LES is to solve flow scales

up to a cut-off and to filter the small scales out. As large scales and smaller scales are coupled,

unresolved small scales need to be modeled using a so-called subgrid-scale (SGS) model. A large

number of filtering techniques and SGS models have been proposed in the Navier-Stokes frame-

work [7].

The Lattice Boltzmann Method (LBM) is a meso-scale flow solver that has been gaining popu-

larity because of its intrinsic scalability, as well as its ability to deal with multiple physics and

complex boundary conditions [8, 9, 10]. The LBM equation describes the streaming and collision

of distribution functions f`(~x, t) on a lattice with a finite set of kinetic velocities ~c`, ` = 0 . . . q− 1.

The collision operator is popularly modeled by the Bhatnagar-Gross-Krook (BGK) [11] relaxation

towards a local equilibrium with a dimensionless relaxation time τ

f`(~x + ~c`∆t, t + ∆t) − f`(~x, t) = −
1
τ

[
f`(~x, t) − f eq

` (~x, t)
]

+ F` (1)

where F` is a suitable forcing term designed to reproduce a macroscopic forcing [8, 9, 10]. From

a theoretical point of view, the use of a multi-scale Chapman-Enskog (CE) perturbative expansion

allows to recover hydrodynamic equations. In brief, one expands the distribution function in a

power-series: f` = f (eq)
` + Kn f (1)

` + K2
n f (2)

` + ..., where Kn = λ/L � 1 is the Knudsen number, giving

the ratio between the particles mean free path λ and the macroscopic scale L. Furthermore, space

and time are rescaled, i.e. ~x(1) = Kn~x, t(1) = Knt, t(2) = K2
n t by introducing separate time scales

for the effect of advection (t(1)) and dissipation (t(2)) [8, 9]. Performing this procedure for a local

equilibrium distribution chosen as (repeated indices are meant summed upon)

f eq
` (~x, t) = f eq

`

(
ρ(~x, t), ~u(~x, t)

)
= t` ρ

1 +
c`, iui

c2
s

+

(
c`, iui

)2

2c4
s
−

uiui

2c2
s

 , (2)

where t` is a set of lattice-dependent weighting factors and cs the speed of sound in the lattice,

one can recover the athermal weekly compressible Navier-Stokes hydrodynamic equations for the

density field ρ(~x, t) =
∑q−1
`=0 f`(~x, t) and velocity field ~u(~x, t) =

∑q−1
`=0 fi(~x, t)~c`/ρ(~x, t)
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∂tρ + ∂ j(ρu j) = 0 + O(K2
n) (3)

∂t (ρui) + ∂ j

(
ρuiu j

)
= −∂i p + ∂ j

(
ρν

(
∂ jui + ∂iu j

))
+ Fi + O(K2

n) + O(Ma3). (4)

Beyond the higher order corrections in the Knudsen number, in the recovery of the momentum

equations one usually neglects terms which are cubic in the velocity [12], hence we find the term

O(Ma3), where the Mach number Ma = URMS
cs

represents the ratio of the root mean square velocity

URMS to cs. The term p = c2
sρ is the fluid pressure and the viscosity ν is linearly dependent on the

relaxation time τ in (5) and vanishes as τ→ 0.5:

ν = c2
s

(
τ −

1
2

)
∆t. (5)

The LBM community has been keenly proposing Navier-Stokes inspired LES techniques to com-

bine the intrinsic scalability of LBM with turbulence SGS models. The majority of them are

eddy viscosities models implemented by locally modifying the relaxation time τ, i.e. assuming

that Eq. (5) holds and that an effective relaxation time τeff(~x, t) results in an effective viscosity

νeff(~x, t) [13, 14, 15, 16]. Malaspinas & Sagaut have shown that this method is only valid in the

athermal weakly compressible limit and proposed a consistent eddy viscosity closure extension for

compressible thermal flows [17]. Instabilities of the LBM with a BGK collision operator (LBGK)

arising for an input relaxation time τ0 → 0.5, i.e. for an input viscosity ν0 → 0, along with the low

Ma, which is required to remain in a good approximation of Navier-Stokes, significantly limit the

range of Reynolds number reachable in practice. Some eddy viscosity methods have been shown

to extend the range of stability to relaxation times τ0 → 0.5, making it possible to simulate higher

Reynolds number flows for a fixed grid resolution [18]. Stabilization of LBGK has been linked

to the existence of an underlying Lyapunov functional in the form of a discrete Boltzmann H-

functional [19]. Karlin et al. [20] introduced the Entropic Lattice Boltzmann (ELBM): an LBGK

ensuring the monotonicity of a convex H-functional commonly chosen as

H (f) =

q−1∑
`=0

f` log
(

f`
t`

)
, f = { f`}

q−1
`=0 . (6)

To equip a LBGK with an H-theorem, ELBM implements a collisional process with an effective

relaxation time τeff = 2τ0
α

to a local equilibrium distribution feq defined as the extremum of the
3



H-functional under the constraints of mass and momentum conservation. The parameter α is

calculated locally (in space and time) and has a non-linear dependency on the distribution functions

f`. While the result is an unconditionally stable LBGK for τ0 → 0.5 (ν0 → 0), we are also

left with a side-effect effective viscosity νeff. Unfortunately, the non-linear dependency of the

effective relaxation time on the distribution functions does not allow this effective viscosity to be

expressed in terms of macroscopic quantities and therefore the physics behind it remains hidden.

In 2008, Malaspinas et al. [21] proposed an approximate formulation of the effective viscosity

νeff(~x, t) = ν0 + νt(~x, t) using CE expansion assuming α ≈ 2 (τeff ≈ τ0). The resulting turbulent

viscosity νt is

νt = −
c2

s

3
τ2

0∆t2 S θκS κγS γθ

S λµS λµ

∝
Tr(S 3)
Tr(S 2)

(7)

where S i j = 1
2 (∂iu j + ∂ jui) is the strain-rate tensor. The above formula suggests a similarity with

the Smagorinsky SGS model [22] νt = Csmago∆x2√S θκS θκ ∝
√

Tr(S 2) while allowing back-scatter

as it can change sign.

In order to quantify the validity of the ELBM methodology as a LES turbulence SGS model, one

needs to be able to evaluate and understand the physics it implies. Firstly, one needs to control the

hydrodynamic recovery and determine to which accuracy the Navier-Stokes equations are recov-

ered as a function of the analyzing sub-volume size [23]. This is an unquestionable prerequisite.

Secondly, one needs to further study the subgrid-scale model implied by the ELBM. Based on this

philosophy, in this paper we propose a tool to numerically evaluate the Navier-Stokes hydrody-

namic recovery of fluid flow simulations in the context of isotropic homogeneous turbulence. This

tool is based on the systematic calculation of each term of the kinetic energy and enstrophy balance

equations averaged over a suitable ensemble of sub-volumes of the computational grid. A similar

approach to characterize LBM hydrodynamics was successfully used in [24, 25] by estimating

the input viscosity ν0 from the incompressible energy and enstrophy equations averaged over the

whole volume. Here, we define an error with respect to an exact balance of the equation of motion

and conduct a statistical analysis over sub-volumes of different sizes to assess the locality of the

hydrodynamic recovery. The paper is organized as follows: in section 2 we introduce the balance

equations, their averaged counterparts over a sub-volume V and we define balancing errors as a
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measure of the hydrodynamic recovery; in section 3 we present the numerical set-up for the sim-

ulations of 2D isotropic homogeneous turbulence and for the statistical analysis of the balancing

errors; in section 4 we present a validation of the tool by comparing the hydrodynamic recovery

of an ensemble of LBGK simulations to an ensemble of Pseudo-Spectral (PS) simulations in the

case of decaying flows; in section 5 we benchmark the tool on LBGK simulations of forced turbu-

lence for a range of increasing Reynolds numbers, while linking the results to the corresponding

statistics of the Mach number; some concluding remarks will follow in section 6.

2. Hydrodynamic recovery for energy and enstrophy balance in 2D

In order to characterize the hydrodynamic recovery of a simulation, we calculate the average

over sub-volumes of the terms in both the kinetic energy and the enstrophy balance equations.

Starting from the formulation of the macroscopic LBM momentum conservation (see Eq. (4)) and

mass conservation (see Eq. (3)), one can obtain the kinetic energy (E =
ρuiui

2 ) balance equation

and the enstrophy (Ω = ωiωi
2 , with ωi the component of the vorticity ~ω = ~∇ × ~u along ~ei) balance

equation

∂t

(
ρuiui

2

)
= − ui∂i p − νρ

(
∂ jui + ∂iu j

)
∂ jui + uiFi

− ∂ j

(
ρuiui

2
u j

)
+ ∂ j

(
νρui

(
∂ jui + ∂iu j

)) (8)

∂t

(
ωiωi

2

)
= − ∂ j

(
ωiωi

2
u j

)
+ ωiω j∂ jui + Hi(ν)εi jk∂ jωk + ωiεi jk∂ j

(
1
ρ

Fk

)
− ∂ j

(
ωiωi

2
u j

)
+ ∂ j

(
εi jkωiHk(ν)

) (9)

where ε is the Levi-Civita symbol and Hi(ν) = 1
ρ
∂ jνρ

(
∂iu j + ∂ jui

)
. Equations (8) and (9) are

locally valid. The next step is to calculate the average of each term of the balance equations over
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a sub-volume V

LHS E
V = ∂t

〈ρuiui

2
〉

V

= −
〈
∂ j

(
ρuiui

2
u j

) 〉
V −

〈
ui∂i p

〉
V +

〈
uiFi

〉
V

−
〈
νρ

(
∂ jui + ∂iu j

)
∂ jui

〉
V +

〈
∂ j

(
νρui

(
∂ jui + ∂iu j

)) 〉
V

= RHS E, 1
V + RHS E, 2

V + RHS E, 3
V + RHS E, 4

V + RHS E, 5
V

= RHS E
V

(10)

LHS Ω
V = ∂t

〈ωiωi

2
〉

V

= −
〈
∂ j

(
ωiωi

2
u j

) 〉
V −

〈ωiωi

2
∂ ju j

〉
V +

〈
ωiεi jk∂ j

(
1
ρ

Fk

) 〉
V

+
〈
Hi(ν)εi jk∂ jωk

〉
V +

〈
∂ j

(
εi jkωiHk(ν)

) 〉
V +

〈
ωiω j∂ jui

〉
V

= RHS Ω, 1
V + RHS Ω, 2

V + RHS Ω, 3
V + RHS Ω, 4

V + RHS Ω, 5
V + RHS Ω, 6

V

= RHS Ω
V

(11)

where
〈
· · ·

〉
V denotes the average over a generic volume V . Equations (10) and (11) describe the

physical balance between the time derivative of the averaged energy and enstrophy (LHS E,Ω
V ) and

the right-hand side (RHS E,Ω
V ) comprising all the physical contributions responsible for their evo-

lution: the effect of compressibility, dissipation, input, and the transport and diffusive fluxes. It is

worth pointing out that equations (10) and (11) remain valid for a viscosity changing in space and

time ν = νeff(~x, t) = ν0 + νt(~x, t). Notice that in 3D, the enstrophy balance must include another

additional term stemming from vortex stretching [3].

To measure the accuracy of the hydrodynamic recovery over a sub-volume V , we define a balanc-

ing error for the kinetic energy and enstrophy balance, δE
V and δΩ

V respectively. At a time t, δE,Ω
V (t)

is obtained by dividing the absolute difference between the RHS E,Ω
V (t) and the LHS E,Ω

V (t) terms

by the term of the right-hand side with the maximum absolute value i.e.

δE
V(t) =

∣∣∣RHS E
V(t) − LHS E

V(t)
∣∣∣

maxi

∣∣∣RHS E, i
V (t)

∣∣∣ (12)

and

δΩ
V (t) =

∣∣∣RHS Ω
V (t) − LHS Ω

V (t)
∣∣∣

maxi

∣∣∣RHS Ω, i
V (t)

∣∣∣ . (13)

6



If for a sub-volume V at a time t the balance equations are perfectly respected on average, we must

have δE
V(t) ≡ δΩ

V (t) ≡ 0.

3. Numerical set-up for the statistical analysis of 2D homogeneous isotropic turbulence hy-

drodynamics

To validate this hydrodynamic recovery check tool, we apply it to configurations obtained from

simulations conducted on a periodic two-dimensional 256×256 computational grid. Turbulence is

triggered by a homogeneous isotropic forcing with a constant phase φ on a shell of (dimensionless)

wavenumbers ~k of magnitude from 5 to 7 given in a stream-function formulation

FT
Ψ(~x) = FT

0

∑
5≤‖~k‖≤7

cos
(

2 π
256

~k · ~x + φ

)
. (14)

The corresponding force is then obtained by taking

FT
x = ∂yFT

Ψ and FT
y = −∂xFT

Ψ, (15)

which ensures that it does not input any incompressibility in the system as ~∇ · ~FT ≡ 0. We use this

forcing to define a time scale T f =
√

2π
k f FT

0
, where k f is taken equal to six. To have some control

on the Mach number and limit the effect of the backward energy cascade, characteristic of 2D

turbulence [26, 27], we introduce a spectral forcing to damp large-scale energy

~FR (
~x, t

)
= −FR

0

∑
1≤‖~k‖≤2

~̂u(~k, t) e
2 π
256
~k·~x (16)

where ~̂u(~k, t) is the Fourier transform of ~u(~x, t). The forcing amplitudes are fixed for all simula-

tions to FT
0 = 0.0008 and FR

0 = 0.00001. LBGK simulations are conducted on a 2D lattice with

9 discrete velocities, the D2Q9 [8, 9, 10], on which forcings are implemented using the exact-

difference method forcing scheme [28]. The sub-volume averaged terms are calculated offline

based on the output configuration fields. A 2nd order explicit Euler scheme is used to evaluate time

derivatives, while a 8th order centered scheme is applied for the space-derivatives, respectively

∂A
∂t

∣∣∣∣∣n
i, j
∼

3An
i, j − 4An−1

i, j + An−2
i, j

2 ∆t
, and (17)

7



∂A
∂x

∣∣∣∣∣n
i, j
∼
− 1

56 An
i+4, j + 4

21 An
i+3, j − An

i+2, j + 4An
i+1, j − 4An

i−1, j + An
i−2, j −

4
21 An

i−3, j + 1
56 An

i−4, j

5 ∆x

&
∂A
∂y

∣∣∣∣∣n
i, j
∼
− 1

56 An
i, j+4 + 4

21 An
i, j+3 − An

i, j+2 + 4An
i, j+1 − 4An

i, j−1 + An
i, j−2 −

4
21 An

i, j−3 + 1
56 An

i, j−4

5 ∆y
.

(18)

Examples of the balancing of the terms of the energy and enstrophy equations are illustrated in

Figs. 1 and 2 respectively. In both cases, the matching between the left-hand side (LHS E,Ω
V ) and

the right-hand side (RHS E,Ω
V ) highlights very small discrepancies observed. Typically, the total

RHS E,Ω
V terms are the result of the sum of significantly higher amplitude terms. Eventually, the

resulting balancing errors δE,Ω
V is of the order O(10−3) for both the kinetic energy balancing and

the enstrophy balancing, resulting in an excellent hydrodynamic recovery.
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Figure 1: Typical time-evolution of the kinetic energy balancing over a single sub-

volume of size 181 × 181 shown for a forced LBGK simulation with τ0 = 0.60 (Re ≈

90) on a 256 × 256 grid. The top figure shows the matching between the LHS E
V and

the RHS E
V , the middle figure shows the contribution of each RHS E, i

V term and their

sum RHS E
V , and the bottom figure shows the balancing error δE

V .
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Figure 2: Typical time-evolution of the enstrophy balancing over a single sub-volume

of size 181× 181 shown for a forced LBGK simulation with τ0 = 0.60 (Re ≈ 90) on a

256×256 grid. The top figure shows the matching between the LHS Ω
V and the RHS Ω

V ,

the middle figure shows the contribution of each RHS Ω, i
V term and their sum RHS Ω

V ,

and the bottom figure shows the balancing error δΩ
V .

In order to gather statistics of both balancing errors δE,Ω
V (t) for a given sub-volume size L, we

calculate them over squared sub-volumes V = L × L randomly chosen in space as illustrated in

Fig. 3.
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Figure 3: Illustration on a snapshot of the vorticity field of three random squared sub-

volumes V1 = L1×L1, V2 = L2×L2, and V3 = L3×L3 corresponding to the sub-volume

size L1, L2, and L3 respectively.

To present the results, we introduce the normalized sub-volume size l = L
L0

with L0 = 256 the

size of the squared computational domain, and we group together the balancing errors δE,Ω
l (t) =

δE,Ω
V=L×L(t) obtained for all sub-volumes of the same normalized sub-volume size l on the same

configuration at time t. We conduct a statistical analysis and define their mean µE,Ω
l (t) and their

standard deviation σE,Ω
l (t). The number of sub-volumes processed for a normalized sub-volume

size l is shown in Table 1.

Sub-volume size L Corresponding normalized sub-volume size l Number of sub-volumes processed

L = 256 l = 1 1

100 ≤ L < 256 0.4 ≤ l < 1 1000

10 ≤ L < 100 0.04 ≤ l < 0.4 5000

L < 10 l < 0.04 10000

Table 1: Number of sub-volumes processed per sub-volume size L
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4. Validation: LBGK against Pseudo-Spectral on an ensemble of decaying flow simulations

To understand how LBGK recovers hydrodynamics, we compare the statistics of the balancing

errors obtained from LBGK simulations to the one obtained from PS simulations, which are used

as a reference. To this aim we generate ensembles of LBGK and PS simulations: we conduct

a statistically stationary forced LBGK Re ≈ 1200 (τ0 = 0.52) simulation that we sample into

25 configurations as shown in Fig. 4, the number 25 being chosen in order to recover smooth

statistics. Each of those configurations is then used to restart a LBGK simulation and to compute

the corresponding vector potential ~b such as ~u = ~∇×~b to initialize an incompressible PS simulation

at the same Reynolds number, thus ensuring that they solve the same physics. Specifically, we set

Re =
ULBGK

RMS LLBGK

νLBGK
0

=
UPS

RMS LPS

νPS
0

(19)

with UPS
RMS = ULBGK

RMS
∆xLBGK

∆tLBGK , LPS = 2π = LLBGK∆xLBGK , and νPS
0 = νLBGK

0
(∆xLBGK )2

∆tLBGK and where

νLBGK
0 = c2

s(τ0 − 0.5) with τ0 = 0.52 in all simulations. Having fixed ∆xLBGK = 2π
256 , τ0 = 0.52, and

∆tLBGK = 0.001, we obtain νPS
0 ≈ 0.004. We set ∆tPS = 0.0005 in order to be able to dump config-

urations of PS and LBGK simulations at the same physical time (∆tLBGK ∝ ∆tPS ), while ensuring

the stability of the PS simulations. Moreover, the velocity fields generated by the forced LBGK

simulation have to be normalized by a factor ∆xLBGK

∆tLBGK before they are used to initialize the PS simu-

lations. After initialization, the simulations are then left with no forcing to decay for a duration of

450 T f , where T f is the time scale based on the forcing as discussed in section 3. Eventually, the

superposed ensemble-averaged energy spectrum for both ensemble at three selected times t1 = 0,

t2 = 225T f , and t3 = 450T f are in very good agreement (Fig. 5). The pressure field for the PS

simulations is obtained by solving, for each configuration, the Poisson equation for pressure, while

the pressure field for the LBGK simulations is obtained directly from the density field p = c2
sρ.

12



Figure 4: Evolution of the kinetic energy (a) and of the enstrophy (b) of the forced

LBGK simulation. The 25 vertical lines highlight the sampled configurations used to

initialize the 25 decaying flow simulations of the PS and the LBGK ensembles.

Figure 5: Superposed ensemble-averaged energy spectrum shown for three selected

time instances for the PS and the LBGK simulations.

We show the results of the statistical analysis of the kinetic energy balancing error δE
l and

enstrophy balancing error δΩ
l in Figs. 6 and 7 respectively. As expected, the PS method recovers

hydrodynamics with a significant higher accuracy than the LBGK, with a clear improvement with

time as the Reynolds number decreases and the simulations become increasingly resolved. This

improvement with time cannot be well appreciated in the LBGK simulations, as it appears to be

sub-leading in both the energy balance statistics µE
l and σE

l (Fig. 6, Panels (c)-(d)) and the the

enstrophy balance statistics µΩ
l and σΩ

l (Fig. 7, Panels (c)-(d)). Taken all together, the statistical
13



analysis of the balancing errors δE
l and δΩ

l show that hydrodynamic recovery is excellent on large

sub-volumes and two orders of magnitude larger on small sub-volumes (see Figs. 6 and 7, Panels

(a)-(b)), the errors remaining however of order O(10−1).

To understand if the range of Mach numbers simulated affects the hydrodynamic recovery, we plot

the statistics on the Mach number at the normalized sub-volume size l, i.e.

Mal =
〈URMS

cs

〉
V=L×L, l =

L
L0

(20)

as shown in Fig. 8. We observe a steady mean (Fig. 8-(c)) going from about 0.55 to 0.4, and a

steady standard deviation (Fig. 8-(d)) up to L ≈ 20. As expected for decaying flows, the Mach

number gradually decreases in time for all sub-volume sizes. The statistical analysis of the decay-

ing LBGK simulations is quite helpful to further assess the importance of the terms proportional

to Ma3 neglected in the momentum equation (see Eq. (4)). Indeed, if we look at the statistics of

the energy and enstrophy balancing errors in Figs. 6 and 7, we notice that if the Mach number

was impacting the balancing errors, we would have observed a statistics that varies in time as

the Mach number decays. Thus, we can conclude that for the range of simulated Mach numbers

the LBGK is a trustworthy Navier-Stokes solver, i.e. the Mach number is low enough so that all

higher order Mach number terms that were neglected in the momentum equation do not affect the

hydrodynamics.

14



Figure 6: Statistics of the balancing error obtained from the kinetic energy balance

δE
l (see Eq. (12)) against the normalized size of the sub-volume l shown for the PS

and LBGK ensemble of 25 decaying simulations for three selected times. Top figures

are PDF of the balancing error for sub-volumes corresponding to l ≈ 0.01 (Panel (a))

and l ≈ 0.707 (Panel (b)) and insets shows the PDFs of the balancing error for the PS

ensemble alone. Bottom figures are the mean (Panel (c)) and the standard deviation

(Panel (d)) of the balancing error.
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Figure 7: Statistics of the balancing error obtained from the enstrophy balance δΩ
l

(see Eq. (13)) against the normalized size of the sub-volume l shown for the PS and

LBGK ensemble of 25 decaying simulations for three selected times. Top figures are

PDFs of the balancing error for sub-volumes corresponding to l ≈ 0.01 (Panel (a))

and l ≈ 0.707 (Panel (b)) and insets shows the PDFs of the balancing error for the PS

ensemble alone. Bottom figures are the mean (Panel (c)) and the standard deviation

(Panel (d)) of the balancing error.
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Figure 8: Statistics of the Mach number at normalized sub-volume size l (see Eq. (20))

Mal against the normalized size of the sub-volume l shown for the LBGK ensemble

of 25 decaying simulations for three selected times. Top figures are PDFs of Mal for

sub-volumes corresponding to l ≈ 0.01 (Panel (a)) and l ≈ 0.707 (Panel (b)). Bottom

figures are the mean (Panel (c)) and the standard deviation (Panel (d)) of Mal.

5. Forced LBGK hydrodynamics

Setting up the forcings as described in section 3, we analyze configurations of statistically

stationary simulations at five different Reynolds numbers Re ≈ 90, 390, 640, 1200 and 1800

respectively corresponding to relaxation times τ0 = 0.60, 0.54, 0.53, 0.52 and τlast
0 = 0.515,

beyond which LBGK is no longer stable. We then obtain statistics of the balancing errors by

averaging both in space and in time on 25 different configurations (see Fig. 9). We show in Fig. 10

the superposed time-averaged spectrum for the conducted simulations. At large scales, we can see

17



the effect of the energy removal preventing the energy to accumulate and maintaining the large-

scale slope over the backward energy cascade slope of −5
3 . On the other hand, at small scales, we

observe that when we decrease τ0 (that is, increasing Re) the flow becomes more turbulent and the

slope gets increasingly closer to the forward enstrophy cascade slope of −3 [26, 27].

Figure 9: Evolution of the kinetic energy (a) and of the enstrophy (b) of LBGK simu-

lations for five different relaxation times. The 25 vertical lines highlight the time when

configurations were processed to gather statistics in space and time of the balancing

errors.

Figure 10: Superposed time-averaged spectrum of LBGK simulations for five different

relaxation times.

We present the results of the statistical analysis of the kinetic energy balancing error δE
l and
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the enstrophy balancing error δΩ
l in Figs. 11 and 12 respectively. As expected from the LBGK-PS

validation results, the hydrodynamic recovery largely depends on the size of the sub-volume it

is measured on. Indeed, hydrodynamic recovery is again excellent on large sub-volumes with an

order of magnitude of up to O(10−3), than on small sub-volumes, where we obtain an error that

is of orders of magnitude O(10−1) (see dashed lines in Figs. 11 and 12, Panels (c)-(d)). For the

energy balancing error presented Fig. 11, we observe a small dependence on the Reynolds number.

However, as shown on Fig. 12, the enstrophy balance becomes better by decreasing Reynolds

number, as it is expected for a quantity that is strongly sensitive to the small-scales resolution.

Having forced with fixed forcing amplitudes, the Mach number of the conducted simulations also

varies as a function of the Reynolds number. To highlight potential high Mach number effects, we

plot again the statistics on the Mach number at sub-volume size l, Mal (Eq. 20) as shown in Fig. 13.

We observe that we are working with Mach number that are qualitatively and quantitatively similar

to the ones studied in the previous section (see Fig. 8), hence we conclude again that we work on

a range of Mach number that does not impact the hydrodynamics.
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Figure 11: Statistics of the balancing error obtained from the kinetic energy balance

δE
l (see Eq. (12)) against the size of the sub-volume l for 5 forced LBGK simulation

of different Reynolds numbers. Top figures are PDF of the balancing error for sub-

volumes corresponding to l ≈ 0.01 (Panel (a)) and l ≈ 0.707 (Panel (b)). Bottom

figures are the mean (Panel (c)) and the standard deviation (Panel (d)) of the balancing

error.
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Figure 12: Statistics of the balancing error obtained from the enstrophy balance δΩ
l

(see Eq. (13)) against the size of the sub-volume l shown for 5 forced LBGK simu-

lation of different Reynolds numbers. Top figures are PDF of the balancing error for

sub-volumes corresponding to l ≈ 0.01 (Panel (a)) and l ≈ 0.707 (Panel (b)). Bottom

figures are the mean (Panel (c)) and the standard deviation (Panel (d)) of the balancing

error.
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Figure 13: Statistics of the Mach number at Mal normalized sub-volume size l (see

Eq. (20)) Mal against the normalized size of the sub-volume l shown for 5 forced

LBGK simulation of different Reynolds numbers. Top figures are PDF of the balanc-

ing error for sub-volumes corresponding to l ≈ 0.01 (Panel (a)) and l ≈ 0.707 (Panel

(b)). Bottom figures are the mean (Panel (c)) and the standard deviation (Panel (d)) of

Mal.

6. Concluding remarks

We have proposed a general tool to check the generated hydrodynamics of fluid flow simula-

tions. The tool hinges on the calculation of the kinetic energy and the enstrophy balance equation

terms averaged over randomly chosen sub-volumes of different size. We have defined balancing

errors, representing the accuracy of the hydrodynamic recovery across sub-volume sizes and con-

ducted a statistical analysis in the context of 2D homogeneous isotropic turbulence. Firstly, we
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validated this tool on decaying 2D turbulence by systematically comparing an ensemble of LBGK

simulations with an ensemble of PS simulations, both initialized with the same configurations. The

PS simulations hydrodynamic recovery accuracy is two to six orders of magnitudes higher than the

LBGK simulations’. Moreover, in all cases hydrodynamic recovery is better verified by looking

at larger and larger sub-volumes. Besides, although the enstrophy balance involves higher order

derivatives than those present in the kinetic energy equation [23], the associated extra discretiza-

tion error was shown to be negligible as both statistics of the energy and enstrophy balancing

errors shows similar order of magnitudes. Secondly, we have applied this tool to check LBGK

hydrodynamic in the context of forced 2D turbulence at increasing Reynolds number. All in all,

we have observed statistics of the balancing errors both from kinetic energy balance and enstrophy

balance that are very similar to the validation LBGK ensemble’s results. In both the validation and

benchmark, the Mach number was maintained low enough for its effect to be sub-leading in the

hydrodynamic recovery.

The ideal continuation of this work is the study of hydrodynamic recovery with LBM in presence

of SGS models of eddy viscosity. To this aim, the developed tool is particularly useful, since it

allows to quantitatively describe the effects of under-resolution and the possible improvements led

by the SGS model. An expansion of this tool to 3D turbulence is also being developed. Indeed,

3D turbulence is of interest, as it exhibits a direct cascade of energy with a Kolmogorov-predicted

slope of k
5
3 , which does not ensure that the flow remains differentiable.
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