3 research outputs found

    Neural Coreference Resolution for Turkish

    Get PDF
    Coreference resolution deals with resolving mentions of the same underlying entity in a given text. This challenging task is an indispensable aspect of text understanding and has important applications in various language processing systems such as question answering and machine translation. Although a significant amount of studies is devoted to coreference resolution, the research on Turkish is scarce and mostly limited to pronoun resolution. To our best knowledge, this article presents the first neural Turkish coreference resolution study where two learning-based models are explored. Both models follow the mention-ranking approach while forming clusters of mentions. The first model uses a set of hand-crafted features whereas the second coreference model relies on embeddings learned from large-scale pre-trained language models for capturing similarities between a mention and its candidate antecedents. Several language models trained specifically for Turkish are used to obtain mention representations and their effectiveness is compared in conducted experiments using automatic metrics. We argue that the results of this study shed light on the possible contributions of neural architectures to Turkish coreference resolution.119683

    Selective algorithms for large-scale classification and structured learning

    Get PDF
    The desired output in many machine learning tasks is a structured object, such as tree, clustering, or sequence. Learning accurate prediction models for such problems requires training on large amounts of data, making use of expressive features and performing global inference that simultaneously assigns values to all interrelated nodes in the structure. All these contribute to significant scalability problems. In this thesis, we describe a collection of results that address several aspects of these problems – by carefully selecting and caching samples, structures, or latent items. Our results lead to efficient learning algorithms for large-scale binary classification models, structured prediction models and for online clustering models which, in turn, support reduction in problem size, improvements in training and evaluation speed and improved performance. We have used our algorithms to learn expressive models from large amounts of annotated data and achieve state-of-the art performance on several natural language processing tasks
    corecore