2,278 research outputs found

    Benchmark of machine learning methods for classification of a Sentinel-2 image

    Get PDF
    Thanks to mainly ESA and USGS, a large bulk of free images of the Earth is readily available nowadays. One of the main goals of remote sensing is to label images according to a set of semantic categories, i.e. image classification. This is a very challenging issue since land cover of a specific class may present a large spatial and spectral variability and objects may appear at different scales and orientations. In this study, we report the results of benchmarking 9 machine learning algorithms tested for accuracy and speed in training and classification of land-cover classes in a Sentinel-2 dataset. The following machine learning methods (MLM) have been tested: linear discriminant analysis, k-nearest neighbour, random forests, support vector machines, multi layered perceptron, multi layered perceptron ensemble, ctree, boosting, logarithmic regression. The validation is carried out using a control dataset which consists of an independent classification in 11 land-cover classes of an area about 60 km2, obtained by manual visual interpretation of high resolution images (20 cm ground sampling distance) by experts. In this study five out of the eleven classes are used since the others have too few samples (pixels) for testing and validating subsets. The classes used are the following: (i) urban (ii) sowable areas (iii) water (iv) tree plantations (v) grasslands. Validation is carried out using three different approaches: (i) using pixels from the training dataset (train), (ii) using pixels from the training dataset and applying cross-validation with the k-fold method (kfold) and (iii) using all pixels from the control dataset. Five accuracy indices are calculated for the comparison between the values predicted with each model and control values over three sets of data: the training dataset (train), the whole control dataset (full) and with k-fold cross-validation (kfold) with ten folds. Results from validation of predictions of the whole dataset (full) show the random forests method with the highest values; kappa index ranging from 0.55 to 0.42 respectively with the most and least number pixels for training. The two neural networks (multi layered perceptron and its ensemble) and the support vector machines - with default radial basis function kernel - methods follow closely with comparable performanc

    Artificial Intelligence Based Classification for Urban Surface Water Modelling

    Get PDF
    Estimations and predictions of surface water runoff can provide very useful insights, regarding flood risks in urban areas. To automatically predict the flow behaviour of the rainfall-runoff water, in real-world satellite images, it is important to precisely identify permeable and impermeable areas. This identification indicates and helps to calculate the amount of surface water, by taking into account the amount of water being absorbed in a permeable area and what remains on the impermeable area. In this research, a model of surface water has been established, to predict the behavioural flow of rainfall-runoff water. This study employs a combination of image processing, artificial intelligence and machine learning techniques, for automatic segmentation and classification of permeable and impermeable areas, in satellite images. These techniques investigate the image classification approaches for classifying three land-use categories (roofs, roads, and pervious areas), commonly found in satellite images of the earth’s surface. Three different classification scenarios are investigated, to select the best classification model. The first scenario involves pixel by pixel classification of images, using Classification Tree and Random Forest classification techniques, in 2 different settings of sequential and parallel execution of algorithms. In the second classification scenario, the image is divided into objects, by using Superpixels (SLIC) segmentation method, while three kinds of feature sets are extracted from the segmented objects. The performance of eight different supervised machine learning classifiers is probed, using 5-fold cross-validation, for multiple SLIC values, while detailed performance comparisons lead to conclusions about the classification into different classes, regarding Object-based and Pixel-based classification schemes. Pareto analysis and Knee point selection are used to select SLIC value and the suitable type of classification, among the aforementioned two. Furthermore, a new diversity and weighted sum-based ensemble classification model, called ParetoEnsemble, is proposed, in this classification scenario. The weights are applied to selected component classifiers of an ensemble, creating a strong classifier, where classification is done based on multiple votes from candidate classifiers of the ensemble, as opposed to individual classifiers, where classification is done based on a single vote, from only one classifier. Unbalanced and balanced data-based classification results are also evaluated, to determine the most suitable mode, for satellite image classifications, in this study. Convolutional Neural Networks, based on semantic segmentation, are also employed in the classification phase, as a third scenario, to evaluate the strength of deep learning model SegNet, in the classification of satellite imaging. The best results, from the three classification scenarios, are compared and the best classification method, among the three scenarios, is used in the next phase of water modelling, with the InfoWorks ICM software, to explore the potential of modelling process, regarding a partially automated surface water network. By using the parameter settings, with a specified amount of simulated rain falling, onto the imaged area, the amount of surface water flow is estimated, to get predictions about runoff situations in urban areas, since runoff, in such a situation, can be high enough to pose a dangerous flood risk. The area of Feock, in Cornwall, is used as a simulation area of study, in this research, where some promising results have been derived, regarding classification and modelling of runoff. The correlation coefficient estimation, between classification and runoff accuracy, provides useful insight, regarding the dependence of runoff performance on classification performance. The trained system was tested on some unknown area images as well, demonstrating a reasonable performance, considering the training and classification limitations and conditions. Furthermore, in these unknown area images, reasonable estimations were derived, regarding surface water runoff. An analysis of unbalanced and balanced data-based classification and runoff estimations, for multiple parameter configurations, provides aid to the selection of classification and modelling parameter values, to be used in future unknown data predictions. This research is founded on the incorporation of satellite imaging into water modelling, using selective images for analysis and assessment of results. This system can be further improved, and runoff predictions of high precision can be better achieved, by adding more high-resolution images to the classifiers training. The added variety, to the trained model, can lead to an even better classification of any unknown image, which could eventually provide better modelling and better insights into surface water modelling. Moreover, the modelling phase can be extended, in future research, to deal with real-time parameters, by calibrating the model, after the classification phase, in order to observe the impact of classification on the actual calibration

    Adaptive feature extraction: Exploring the search space with change detection using inductive learners and image processing

    Get PDF

    Large Area Land Cover Mapping Using Deep Neural Networks and Landsat Time-Series Observations

    Get PDF
    This dissertation focuses on analysis and implementation of deep learning methodologies in the field of remote sensing to enhance land cover classification accuracy, which has important applications in many areas of environmental planning and natural resources management. The first manuscript conducted a land cover analysis on 26 Landsat scenes in the United States by considering six classifier variants. An extensive grid search was conducted to optimize classifier parameters using only the spectral components of each pixel. Results showed no gain in using deep networks by using only spectral components over conventional classifiers, possibly due to the small reference sample size and richness of features. The effect of changing training data size, class distribution, or scene heterogeneity were also studied and we found all of them having significant effect on classifier accuracy. The second manuscript reviewed 103 research papers on the application of deep learning methodologies in remote sensing, with emphasis on per-pixel classification of mono-temporal data and utilizing spectral and spatial data dimensions. A meta-analysis quantified deep network architecture improvement over selected convolutional classifiers. The effect of network size, learning methodology, input data dimensionality and training data size were also studied, with deep models providing enhanced performance over conventional one using spectral and spatial data. The analysis found that input dataset was a major limitation and available datasets have already been utilized to their maximum capacity. The third manuscript described the steps to build the full environment for dataset generation based on Landsat time-series data using spectral, spatial, and temporal information available for each pixel. A large dataset containing one sample block from each of 84 ecoregions in the conterminous United States (CONUS) was created and then processed by a hybrid convolutional+recurrent deep network, and the network structure was optimized with thousands of simulations. The developed model achieved an overall accuracy of 98% on the test dataset. Also, the model was evaluated for its overall and per-class performance under different conditions, including individual blocks, individual or combined Landsat sensors, and different sequence lengths. The analysis found that although the deep model performance per each block is superior to other candidates, the per block performance still varies considerably from block to block. This suggests extending the work by model fine-tuning for local areas. The analysis also found that including more time stamps or combining different Landsat sensor observations in the model input significantly enhances the model performance
    • …
    corecore