1,990 research outputs found

    Detection of REM Sleep Behaviour Disorder by Automated Polysomnography Analysis

    Full text link
    Evidence suggests Rapid-Eye-Movement (REM) Sleep Behaviour Disorder (RBD) is an early predictor of Parkinson's disease. This study proposes a fully-automated framework for RBD detection consisting of automated sleep staging followed by RBD identification. Analysis was assessed using a limited polysomnography montage from 53 participants with RBD and 53 age-matched healthy controls. Sleep stage classification was achieved using a Random Forest (RF) classifier and 156 features extracted from electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG) channels. For RBD detection, a RF classifier was trained combining established techniques to quantify muscle atonia with additional features that incorporate sleep architecture and the EMG fractal exponent. Automated multi-state sleep staging achieved a 0.62 Cohen's Kappa score. RBD detection accuracy improved by 10% to 96% (compared to individual established metrics) when using manually annotated sleep staging. Accuracy remained high (92%) when using automated sleep staging. This study outperforms established metrics and demonstrates that incorporating sleep architecture and sleep stage transitions can benefit RBD detection. This study also achieved automated sleep staging with a level of accuracy comparable to manual annotation. This study validates a tractable, fully-automated, and sensitive pipeline for RBD identification that could be translated to wearable take-home technology.Comment: 20 pages, 3 figure

    EEG sleep stages identification based on weighted undirected complex networks

    Get PDF
    Sleep scoring is important in sleep research because any errors in the scoring of the patient's sleep electroencephalography (EEG) recordings can cause serious problems such as incorrect diagnosis, medication errors, and misinterpretations of patient's EEG recordings. The aim of this research is to develop a new automatic method for EEG sleep stages classification based on a statistical model and weighted brain networks. Methods each EEG segment is partitioned into a number of blocks using a sliding window technique. A set of statistical features are extracted from each block. As a result, a vector of features is obtained to represent each EEG segment. Then, the vector of features is mapped into a weighted undirected network. Different structural and spectral attributes of the networks are extracted and forwarded to a least square support vector machine (LS-SVM) classifier. At the same time the network's attributes are also thoroughly investigated. It is found that the network's characteristics vary with their sleep stages. Each sleep stage is best represented using the key features of their networks. Results In this paper, the proposed method is evaluated using two datasets acquired from different channels of EEG (Pz-Oz and C3-A2) according to the R&K and the AASM without pre-processing the original EEG data. The obtained results by the LS-SVM are compared with those by Naïve, k-nearest and a multi-class-SVM. The proposed method is also compared with other benchmark sleep stages classification methods. The comparison results demonstrate that the proposed method has an advantage in scoring sleep stages based on single channel EEG signals. Conclusions An average accuracy of 96.74% is obtained with the C3-A2 channel according to the AASM standard, and 96% with the Pz-Oz channel based on the R&K standard

    Harnessing the Power of Many: Extensible Toolkit for Scalable Ensemble Applications

    Full text link
    Many scientific problems require multiple distinct computational tasks to be executed in order to achieve a desired solution. We introduce the Ensemble Toolkit (EnTK) to address the challenges of scale, diversity and reliability they pose. We describe the design and implementation of EnTK, characterize its performance and integrate it with two distinct exemplar use cases: seismic inversion and adaptive analog ensembles. We perform nine experiments, characterizing EnTK overheads, strong and weak scalability, and the performance of two use case implementations, at scale and on production infrastructures. We show how EnTK meets the following general requirements: (i) implementing dedicated abstractions to support the description and execution of ensemble applications; (ii) support for execution on heterogeneous computing infrastructures; (iii) efficient scalability up to O(10^4) tasks; and (iv) fault tolerance. We discuss novel computational capabilities that EnTK enables and the scientific advantages arising thereof. We propose EnTK as an important addition to the suite of tools in support of production scientific computing

    Self-adjustable domain adaptation in personalized ECG monitoring integrated with IR-UWB radar

    Get PDF
    To enhance electrocardiogram (ECG) monitoring systems in personalized detections, deep neural networks (DNNs) are applied to overcome individual differences by periodical retraining. As introduced previously [4], DNNs relieve individual differences by fusing ECG with impulse radio ultra-wide band (IR-UWB) radar. However, such DNN-based ECG monitoring system tends to overfit into personal small datasets and is difficult to generalize to newly collected unlabeled data. This paper proposes a self-adjustable domain adaptation (SADA) strategy to prevent from overfitting and exploit unlabeled data. Firstly, this paper enlarges the database of ECG and radar data with actual records acquired from 28 testers and expanded by the data augmentation. Secondly, to utilize unlabeled data, SADA combines self organizing maps with the transfer learning in predicting labels. Thirdly, SADA integrates the one-class classification with domain adaptation algorithms to reduce overfitting. Based on our enlarged database and standard databases, a large dataset of 73200 records and a small one of 1849 records are built up to verify our proposal. Results show SADA\u27s effectiveness in predicting labels and increments in the sensitivity of DNNs by 14.4% compared with existing domain adaptation algorithms

    Machine learning with ensemble stacking model for automated sleep staging using dual-channel EEG signal

    Get PDF
    Abstract Sleep staging is an important part of diagnosing the different types of sleep-related disorders because any discrepancies in the sleep scoring process may cause serious health problems such as misinterpretations of sleep patterns, medication errors, and improper diagnosis. The best way of analyzing sleep staging is visual interpretations of the polysomnography (PSG) signals recordings from the patients, which is a quite tedious task, requires more domain experts, and time-consuming process. This proposed study aims to develop a new automated sleep staging system using the brain EEG signals. Based on a new automated sleep staging system based on an ensemble learning stacking model that integrates Random Forest (RF) and eXtreme Gradient Boosting (XGBoosting). Additionally, this proposed methodology considers the subjects' age, which helps analyze the S1 sleep stage properly. In this study, both linear (time and frequency) and non-linear features are extracted from the pre-processed signals. The most relevant features are selected using the ReliefF weight algorithm. Finally, the selected features are classified through the proposed two-layer stacking model. The proposed methodology performance is evaluated using the two most popular datasets, such as the Sleep-EDF dataset (S-EDF) and Sleep Expanded-EDF database (SE-EDF) under the Rechtschaffen & Kales (R&K) sleep scoring rules. The performance of the proposed method is also compared with the existing published sleep staging methods. The comparison results signify that the proposed sleep staging system has an excellent improvement in classification accuracy for the six-two sleep states classification. In the S-EDF dataset, the overall accuracy and Cohen's kappa coefficient score obtained by the proposed model is (91.10%, 0.87) and (90.68%, 0.86) with inclusion and exclusion of age feature using the Fpz-Cz channel, respectively. Similarly, the Pz-Oz channel's performance is (90.56%, 0.86) with age feature and (90.11%, 0.86) without age feature. The performed results with the SE-EDF dataset using Fpz-Cz channel is (81.32%, 0.77) and (81.06%, 0.76), using Pz-Oz channel with the inclusion and exclusion of the age feature, respectively. Similarly the model achieved an overall accuracy of 96.67% (CT-6), 96.60% (CT-5), 96.28% (CT-4),96.30% (CT-3) and 97.30% (CT-2) for with 16 selected features using S-EDF database. Similarly the model reported an overall accuracy of 85.85%, 84.98%, 85.51%, 85.37% and 87.40% for CT-6 to CT-2 with 18 selected features using SE-EDF database

    Electroencephalography (EEG) Based Neonatal Sleep Staging and Detection Using Various Classification Algorithms

    Get PDF
    Automatic sleep staging of neonates is essential for monitoring their brain development and maturity of the nervous system. EEG based neonatal sleep staging provides valuable information about an infant’s growth and health, but is challenging due to the unique characteristics of EEG and lack of standardized protocols. This study aims to develop and compare 18 machine learning models using Automated Machine Learning (autoML) technique for accurate and reliable multi-channel EEG-based neonatal sleep-wake classification. The study investigates autoML feasibility without extensive manual selection of features or hyperparameter tuning. The data is obtained from neonates at post-menstrual age 37 ± 05 weeks. 3525 30-s EEG segments from 19 infants are used to train and test the proposed models. There are twelve time and frequency domain features extracted from each channel. Each model receives the common features of nine channels as an input vector of size 108. Each model’s performance was evaluated based on a variety of evaluation metrics. The maximum mean accuracy of 84.78% and kappa of 69.63% has been obtained by the AutoML-based Random Forest estimator. This is the highest accuracy for EEG-based sleep-wake classification, until now. While, for the AutoML-based Adaboost Random Forest model, accuracy and kappa were 84.59% and 69.24%, respectively. High performance achieved in the proposed autoML-based approach can facilitate early identification and treatment of sleep-related issues in neonates

    EEG-Based Neonatal Sleep Stage Classification Using Ensemble Learning

    Get PDF
    Sleep stage classification can provide important information regarding neonatal brain development and maturation. Visual annotation, using polysomnography (PSG), is considered as a gold standard for neonatal sleep stage classification. However, visual annotation is time consuming and needs professional neurologists. For this reason, an internet of things and ensemble-based automatic sleep stage classification has been proposed in this study. 12 EEG features, from 9 bipolar channels, were used to train and test the base classifiers including convolutional neural network, support vector machine, and multilayer perceptron. Bagging and stacking ensembles are then used to combine the outputs for final classification. The proposed algorithm can reach a mean kappa of 0.73 and 0.66 for 2-stage and 3-stage (wake, active sleep, and quiet sleep) classification, respectively. The proposed network works as a semi-real time application because a smoothing filter is used to hold the sleep stage for 3 min. The high-performance parameters and its ability to work in semi real-time makes it a promising candidate for use in hospitalized newborn infants
    • …
    corecore