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Abstract

In this work, we explore data-driven techniques for the fast and early diagnosis con-
cerning the etiological origin of meningitis, more specifically with regard to differenti-
ating between viral and bacterial meningitis. We study how machine learning can be
used to predict meningitis aetiology once a patient has been diagnosed with this dis-
ease. We have a dataset of 26,228 patients described by 19 attributes, mainly about
the patient's observable symptoms and the early results of the cerebrospinal fluid

analysis. Using this dataset, we have explored several techniques of dataset sampling,

Email: lcc.uma. . e
mail: guzman@lec.uma.es feature selection and classification models based both on ensemble methods and on

simple techniques (mainly, decision trees). Experiments with 27 classification models
(19 of them involving ensemble methods) have been conducted for this paper. Our
main finding is that the combination of ensemble methods with decision trees leads
to the best meningitis aetiology classifiers. The best performance indicator values
(precision, recall and f-measure of 89% and an AUC value of 95%) have been
achieved by the synergy between bagging and NBTrees. Nonetheless, our results also
suggest that the combination of ensemble methods with certain decision tree clearly
improves the performance of diagnosis in comparison with those obtained with only

the corresponding decision tree.
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1 | INTRODUCTION

Bacterial meningitis (BM) is a severe infectious disease of the protecting membranes (meninges) surrounding the brain and spinal cord (Van de
Beek et al., 2016). Potential morbidity and mortality, as well as the treatment difficulties, make the infection of the central nervous system a chal-
lenge to physicians (Parikh et al., 2012). Aseptic (or viral) meningitis (AM) and BM are diseases representing about 90% of the central nervous sys-
tem infections. Even though there are vaccines for preventing some types of AM and BM, in many countries (especially in those at a lower level
of development) strategies of vaccination do not reach their entire population, resulting in epidemics. AM is the most common type of meningitis
and is often less severe than BM. Most cases are caused by the group of viruses known as enteroviruses, but others (e.g., HIV, herpes, etc.) also
can cause AM. BM is much severer and can even lead to death if the patient does not receive medical attention. Several strains of bacteria, such
as pneumococcus, meningococcus, influenza or listeria, can cause acute BM. In many cases, symptoms are revealed suddenly and cause death or
serious neurological sequels in a short period of time (i.e., in a few days or even in hours). For this reason, studies such as (Koster-Rasmussenz
et al., 2008) reveal that in severe cases, mortality increases about 30% for each hour of delay. Accurate diagnosis is thus essential for these cases
of acute meningitis (Spanos et al., 1989). Nonetheless, for physicians, it is often difficult to distinguish between AM and initial BM. Making a

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any
medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2022 The Authors. Expert Systems published by John Wiley & Sons Ltd.

Expert Systems. 2022;e12996.
https://doi.org/10.1111/exsy.12996

wileyonlinelibrary.com/journal/exsy 10of 25


https://orcid.org/0000-0002-5172-9681
mailto:guzman@lcc.uma.es
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/exsy
https://doi.org/10.1111/exsy.12996
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fexsy.12996&domain=pdf&date_stamp=2022-03-18

2 of 25 Wl LEY— Expert Systems '}n‘-“:’ ( GUZMAN €T AL.

suitable diagnosis that allows differentiating between AM and BM is complex but also vital. In an ideal scenario, due to the severity of BM, it
should be detected without any error. Furthermore, an incorrect diagnosis of AM leads to expensive and non-effective treatments (D'Angelo
et al., 2019).

Typical symptoms and signs of BM include headache and altered mental status, nausea and vomiting, stiff neck, high fever, radicular pain,
signs of increased intracranial pressure (such as papilledema), and petechiae (meningococcal disease). AM shares the first four symptoms with BM,
being papilledema and fever other less common symptoms as compared with BM (Parikh et al., 2012). In a patient with suspected meningitis, lum-
bar puncture and examination of the cerebrospinal fluid (CSF) have to be performed immediately, since CSF culture remains the gold standard for
confirmation of the meningitis cause. Currently, meningitis aetiology diagnosis is made by analysing the patient's blood and his/her CSF.
According to Gonzélez Suarez et al. (2013) the study of CSF entails: (i) the physical examination, that is, the visual exploration of its colour and
appearance; (ii) the chemical analysis, that is, measuring the concentration of several interesting components, such as glucose, proteins, enzymes,
and so forth,; (iii) the microscopic examination, whose purpose is mainly to look for cells (erythrocytes and leukocytes); and, finally, (iv) the micro-
biological study, which identifies and isolates the infectious agent that causes the disease. In this sense Spanos et al. (1989) pointed out that clas-
sical findings on CSF which, in principle, should clearly allow to diagnose between AM or BM, even in acute cases, are often not present. The
typical CSF findings that are individual predictors of BM with 99% certainty are CSF glucose <1.9 mmol/L, a CSF-to-blood glucose ratio of 0.23,
CSF protein concentration above 2.2 g/L, CSF white blood cells (WBC) above 2000/ml, or CSF neutrophils above 1180/ml. The presence of atyp-
ical lymphocytes in the CSF is highly suggestive of AM, but lymphocyte prevalence does not exclude pyogenic bacterial infection. Gram stain of
the CSF is a very useful test and its results are related to the bacterial content of the CSF. In patients pretreated with antibiotics, Gram stain is
positive in 40%-60% of cases and CSF culture is positive in <50% (Pokorn, 2004).

In our previous studies we developed two machine learning models which are able to perform a non-invasive diagnosis of meningitis (Lélis
et al., 2017) and to determine whether or not it may be the meningococcal disease (Lélis et al., 2018) based only on observable symptoms. The
goal of the study described in this paper is to develop a model able to identify the probable etiological origin of meningitis among the most fre-
quent causal agents: bacteria or viruses. In Lélis et al. (2020) we constructed a preliminary model to diagnose AM and BM, which was based on
decision rules obtained from clinical practice guidelines recommendations related to the interpretation of CSF alterations. Thus, to determine the
disease etiological origin, invasive tests were necessary. However, unlike CSF culture (microbiological study), just a few hours are needed to
obtain the results of the CSF chemical-cytological test. From the attributes obtained in these tests and following both the recommendations
found in the literature and the advice of meningitis specialists, different models were defined and tested in order to find those that demonstrated
the better performance. The best decision rules obtained were encoded in the decision models. Attributes such as the appearance of the CSF, leu-
kocytes, and proteins were significant for both models. The BM model also needed information regarding glucose, while the AM model included

an attribute related to lymphocyte values. The performance results showed an accuracy of 0.83 in the case of BM model and 0.81 for AM model.

1.1 | Literature review

Over the last few years, machine learning and Al techniques have been used as diagnostic tools for different pathologies. These tools may offer
to physicians an early and effective decision-making support. Literature reviews (e.g., Kong et al., 2008; Wright et al., 2011) reveal that there are
many Clinical Decision Support Systems in very different healthcare domains. Some are proposals of generic frameworks (Kong et al., 2008;
Shirabad et al., 2012; Yilmaz et al., 2013) or hybrid learning frameworks (Wang et al., 2017; Wang & Chen, 2020) that could be used for the diag-
nosis and treatment of different pathologies. However, the majority of the approaches focus on ad hoc systems developed for the diagnosis of a
specific disease: diabetes (Dhakate et al., 2015; Han et al., 2008), asthma (Farion et al., 2010), arrhythmia (Emina & Subasi, 2016), glaucoma
(Huang & Chen, 2010), sleep apnea (Ting et al., 2014), cancer (Aloraini, 2012; Chao et al., 2014; Park et al., 2013; Takada et al., 2012), liver dis-
eases (Abdar et al., 2017), or Parkinson (Chen et al., 2016; Gok, 2015) are just some examples.

Some of the aforementioned works (Chao et al., 2014; Emina & Subasi, 2016; Farion et al., 2010; Huang & Chen, 2010; Ting et al., 2014) use
different classifiers based on decision trees, just like our study. In Huang and Chen (2010) a decision tree for diagnosing glaucoma in Taiwan's Chi-
nese population is used. For this purpose, a Classification and Regression Tree was applied, being the accuracy, sensitivity, and specificity of
0.890, 0.958, and 0.824. In Farion et al. (2010) a decision tree for predicting the severity of paediatric asthma exacerbation in an emergency
department was proposed. In this case, the C4.5 algorithm was employed to construct four decision models. In Ting et al. (2014) a Microsoft Deci-
sion Trees algorithm model was applied to propose a clinical prediction formula for Taiwanese obstructive sleep apnea; the overall accuracy of
that model was 0.96. In Chao et al. (2014) the authors focused on identifying the best algorithms for early breast cancer detection. They
experimented with three classification models, being one of them C5.0 decision tree, which showed accuracy of 0.93. Emina and Subasi (2016)
describe a study where a Random Forest classifier was proposed for ECG heartbeat signal classification in diagnosis of heart arrhythmia, obtaining
an accuracy of 0.99. Additionally, other Al techniques have also been used in medical diagnosis with good results. In Chen et al. (2016) extreme
learning machine (ELM) and kernel ELM (KELM) were explored in constructing an automatic diagnostic system for diagnosis of Parkinson's dis-

ease. In order to further improve the performance of ELM and KELM models, feature selection techniques were implemented prior to the
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construction of the classification model. The method achieved a classification accuracy of 0.96. In Li et al. (2018) the authors develop a new data-
driven machine learning approach for the diagnosis of tuberculous pleural effusion (TPE). This model, which employs moth-flame-optimization-
based Support Vector Machines (SVM) with feature selection (FS-MFO-SVM), shows an average accuracy of 0.95 and provides a fast, non-inva-
sive, and cost-effective TPE diagnosis.

Ensemble learning has also been a successful research area in the machine learning domain. Ensemble methods have been widely used in
many application domains—for example, sentiment analysis (Onan, 2021a, 2021b; Onan et al., 2016b), intrusion detection (Aburomman &
Reaz, 2016), scientific text classification (Onan, 2017; Onan et al., 2016a), genre text classification (Onan, 2018), or medical diagnosis (Brunese
et al., 2020; Hosni et al., 2019; Oliveira et al., 2017; Wang et al., 2019), among others. In this last domain, ensemble methods are extensively used
to perform prediction tasks, and many authors (e.g., Hastie et al., 2009; Seni & Elder, 2010) agree these methods often lead to more accurate
results than other simple machine-learning based models. In literature we can find different examples of ensemble algorithms applied to medical
diagnosis; Hosni et al. (2019) carry out an extensive review of the literature regarding its application to breast cancer detection; Brunese
et al. (2020) propose an interesting ensemble architecture to diagnose brain cancer, starting from non-invasive features, that outperforms the
accuracy of most approaches of machine learning to brain cancer detection; Oliveira et al. (2017) show a variant of the ensemble mechanisms
using different feature selection techniques for skin cancer diagnosis; and Wang et al. (2019) also propose the use of different ensemble tech-
nigues for the detection of sleep disorders.

Regarding meningitis diagnosis, after an extensive review of the literature, we have found only one approach involving ensemble techniques
(Zaccari & Cordeiro, 2019), but these are not used for determining the aetiology of the cases. Table 1 illustrates the literature on machine-learning
based meningitis diagnosis with a summarized review of each paper. For each study, whose reference is indicated in the first column, the follow-
ing information is included (from the second to the last column): year of publication, the main technique used, number of patient records, available
performance indicators, type of meningitis targeted in the study, use (or not) of invasive features, and whether or not the study was performed

only with paediatric patients.

(Bagging+NBTree)

TABLE 1 Literature review on meningitis diagnosis
Only
Invasive paediatric
Reference Main technique Dataset size  Performance Target features patients
Jaeger et al. (2000) Multivariate logistic 103 0.96 (PPV) AM/BM Yes Yes
regression analysis
Freedman et al. (2001) Multivariate logistic 1617 0.99 (NPV) AM/BM Yes Yes
regression analysis
Nigrovic et al. (2002) Multivariate logistic 696 1.00 (NPV) AM/BM Yes Yes
regression analysis
Bonsu and Harper (2004) Multivariate logistic 253 0.98 (sensitivity) AM/BM Yes Yes
regression analysis
Weitzel et al. (2005) Neural network 150 0.59 (accuracy) BM (meningococcal Yes No
disease)
Revett et al. (2006) Rough Set Theory 581 0.86 (accuracy) AM/BM Yes No
Ocampo et al. (2011) Case Based Reasoning 216 0.90 (accuracy) BM (meningococcal Yes Yes
disease)
Mago et al. (2012) Fuzzy cognitive maps 40 0.83 (sensitivity)  Meningitis No Yes
Gowin et al. (2017) Dominance-based rough 148 0.95 (accuracy) AM/BM Yes Yes
set approach
Lélis et al. (2017) Decision trees 22,602 0.94 (accuracy) BM (meningococcal No No
disease)
D'Angelo et al. (2019) Genetic programming/ 420 0.96 (AUC) AM/BM Yes No
decision trees
Zaccari and Cordeiro (2019)  Machine learning 3265 0.96 (accuracy) Meningitis Yes Yes
techniques/decision
trees
Lélis et al. (2020) ADTree 26,228 0.87 (AUC) Meningitis No No
Our approach Ensemble algorithms 12,420 0.95 (AUC) AM/BM Yes No

Abbreviations: AM, aseptic meningitis; AUC, area under the curve; BM, bacterial meningitis; NPV, non-predictive value; PPV, predictive positive value.
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Mago et al. (2012) predict the probability of meningitis in infants and young children (2 months-7 years) from semi-urban areas of India using
fuzzy cognitive maps as knowledge representation technique. Fuzzy cognitive maps are a symbolic representation for the description of complex
systems in terms of concepts. The small size of the training and validation sets (40 and 16 cases), as well as the non-formal fuzzy sets definition
(based only on expert judgement) may compromise the validity of the results (sensitivity 0.83 and specificity 0.80). Moreover, the system cannot
be used in adults or children over seven.

Case Based Reasoning (CBR) is the main technique used in Ocampo et al. (2011), where a decision support system for acute BM diagnosis is
constructed. The work provides a comparison among three prototypes: one using CBR, the second a combination of CBR and a rule-based expert
system, and the last one an expert system with a Bayesian inference engine. These tools are targeted only to paediatric patients, use some signs
and symptoms obtained from invasive medical tests as input, and, therefore, are not suitable for early diagnosis. Regarding the results, the proto-
types exhibited good precision (greater than 0.90). However, the CBR-based prototypes used a “virtual” diagnostic case base of only 216 cases,
randomly generated from a real database of 10,000 paediatric patients and then validated by medical experts. In addition, only 30 cases, extracted
from the “virtual” case base, were used to evaluate the performance of the prototypes.

Weitzel et al. (2005) use a back-propagation neural network with supervised learning for the classification of seven different types of meningi-
tis. Eighteen clinical and laboratory features (including some obtained from invasive medical tests) were used as input variables. For training and
validation purposes, only 135 and 15 records were used, respectively. Regarding the results, the prediction accuracy of meningococcal meningitis
is low, around 0.59.

The only one proposal involving ensemble methods we have found in the literature (Zaccari & Cordeiro, 2019) uses different machine learning
techniques to diagnose meningitis. The work focuses on predicting the probability of having meningitis using 34 attributes from blood and urine
samples through the following approaches: decision tree, K-Nearest Neighbours, Logistics Regression, SVM, Random Forest, and two ensemble
algorithms: AdaBoost and Gradient Boosting. A database of 3265 records was used, which only contained 15% of patients diagnosed with menin-
gitis. Synthetic Minority Oversampling Technique (SMOTE) oversampling technique was applied as well, and decision tree achieved the best perfor-
mance with an accuracy of 0.96.

Regarding the studies conducted on discriminating between AM and BM, the first approaches (Bonsu & Harper, 2004; Freedman et al., 2001;
Jaeger et al., 2000; Nigrovic et al., 2002) provide clinical rules for this purpose in children. Freedman et al. (2001) perform an analysis on a CSF
sample database of 1617 children. They use a multiple logistic regression model to analyse the predictive value of the number of WBC, proteins,
and glucose in CSF. Their main results were an non-predictive value (NPV) of 0.99 for children with WBCs values of less than 30 per microlith,
but, however, this model was not validated. Nigrovic et al. (2002) use multivariable logistic regression and recursive partitioning to differentiate
viral from BM on a database of CSF samples from 696 children. Using CSF protein, neutrophils, seizure as predictors (features), the authors obtain
an NPV of 1.0 for BM and a sensitivity of 0.87. Jaeger et al. (2000) also provide a clinical rule-based diagnostic model for BM, based on four
parameters got from 103 CSF samples: the CSF protein level, CSF polymorph nuclear cell count, blood glucose level, and leucocyte count. The
predictive positive value(PPV) and NPV in this model were of 0.96 and 0.97, respectively. Finally, Bonsu and Harper (2004) carried out a multivar-
iable logistic regression-based model to predict BM based solely on age (AGE), total protein (TP), and total neutrophil count (TNC) of the CSF sam-
ples. They propose a simple clinical rule (0.343 — 0.003 TNC — 34.802 TP 4 21.991 TP — 0.345 AGE), to differentiate between AM and BM. The
model achieved a sensitivity of 0.98 and a specificity of 0.62. Revett et al. (2006) and Gowin et al. (2017) propose two approaches, based on
Rough Set Theory, to discriminate between AM and BM. That theory allows establishing the minimum set of significant attributes, as well as gen-
erating a set of rules to perform the classification. In Gowin et al. (2017) Dominance-based Rough Set approach was applied to discover diagnostic
patterns. These patterns were represented by monotonous decision rules, useful for discriminating between AM and BM. As result, six rules were
generated by analysing the medical records of 148 children. Using these rules, AM was correctly diagnosed in 95% of cases, and BM in 98%. The
dataset of Revett et al. (2006) comprised 581 records, reduced to 110 after preprocessing. This approach exhibited an average precision of 0.86.
These two studies used features obtained by invasive tests and small datasets and were not formally validated.

D'Angelo et al. (2019) present a proposal to distinguish between AM and BM using genetic programming and decision trees among other
machine learning techniques. A dataset with 420 instances was used (215 BM and 205 AM cases). The work suggests that the combination of dif-
ferent clinical features from blood samples and CSF is necessary to differentiate between these two etiologies. The study further concludes, like
our approach, that low CSF protein values, in coincidence with other clinical parameters, may be representative of BM. Authors achieve a high
performance, 0.98 AUC, in the detection of BM.

1.2 | Contributions

In this paper, several machine learning models have been explored to obtain more accurate predictors in order to improve meningitis etiological
diagnoses. For this study, we have used a dataset of 26,228 patients provided by SINAN, the Information System of the Health Department of
the Brazilian Government. Since a fast and early diagnosis in the meningitis etiological origin is mandatory, we have used 19 attributes of the

dataset, mainly about the patient's observable symptoms and the early results of the CSF analysis. Then, we have explored several techniques of
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dataset sampling, feature selection, and classification models based both on ensemble methods and on simple techniques (mainly, decision trees).

The main contribution of this paper can be summarized as follows:

o A fast, early and accurate diagnosis to differentiating between viral and BM through the combination of ensemble models with decision trees,
especially with NBTrees. The performance indicators of the decision models explored here show more accurate diagnosis of the etiological ori-
gin of meningitis than our previous models, being the ensemble models those exhibiting outstanding classification performances. More con-
cretely, we got an average accuracy of 0.89 and AUC of 0.95 with the combination of bagging and NBTree.

e Our proposal, to be the best of our knowledge, is the first method that uses ensemble algorithms to discriminate between AM and BM in terms
of observable symptoms and information obtained after a prior and fast analysis of CSF.

e Through the studies we have conducted in the framework of this work and others we published before, decision trees are a suitable approach
for constructing models for early and less invasive meningitis diagnosis in comparison to conventional techniques commonly used for this
purpose.

o The oversampling techniques, in our case SMOTE, lead to better diagnostic models in comparison to other techniques for data balancing such

as undersampling. Undersampling-based models often performs worst in comparison to models obtained with unbalanced original dataset.

The paper is structured as follows: the next two sections are devoted to the ensemble methods and classification algorithms explored in our stud-
ies. Section 4 provides a description of the clinical dataset involved in this study and explains the different studies we have performed. Section 5
presents their results; and Section 6 analyzes and discusses them. Finally, Section 7 summarizes the conclusions we found through these studies.

2 | ENSEMBLE METHODS

Ensemble methods combine the performance of multiple machine-learning algorithms, or base models, to improve the predictions made by them
individually. The goal is to reduce the bias and/or variance of such base models by combining several of them together. In this way, classification
models with higher generalization properties are desirable, since the dependence of classification results on a single training set is eliminated
(Onan et al., 2016a; Kuncheva, 2014). In constructing effective ensemble models, identifying base algorithms with higher predictive accuracy and
diversity are critical issues. In order to provide this diversity, two strategies should be performed, that is, manipulations at the data level
(Onan, 2017) or manipulations at the model generation level (Mendes-Moreira et al., 2012). In relation to the predictive performance, the identifi-
cation of an appropriate combination scheme for base learning algorithms is critical (Moreno-Seco et al., 2006; Onan et al., 2016b).

Generally, three types of ensemble models are distinguished in the literature: Bagging, Boosting, and Ensemble Combination methods, such
as stacking or voting schemes. Bagging and Boosting algorithms are homogeneous classifier ensemble methods where the same base learning
algorithm is used. In contrast, the Ensemble Combination methods can use different learning algorithms, so they are heterogeneous classifier

ensemble methods. Below, we describe the main characteristics of these three models.

2.1 | Boosting algorithms

Boosting algorithms use homogeneous base learning algorithms that learn in an iterative way, where the outputs of each base model depend on
the previous ones. For this reason, they are considered dependent algorithms. In the sequence, each model is fitting giving more weight to sample
observations that were worse classified by the previous models. As a result, a prediction model with lower bias than its components can be
achieved. AdaBoost and Gradient Boosting are the most known boosting algorithms. They differ on how they create and aggregate the base
models during the sequential process: AdaBoost (Adaptive Boosting; Freund & Schapire, 1997) updates the weights attached to each training
dataset observation, and Gradient boosting updates the values of these observations. AdaBoost is the most famous boosting algorithm, and its
pseudocode (Zhou, 2019) is shown in Figure 1. AdaBoost adaptively adjusts the error obtained by the weak learners through an iterative optimi-
zation process where the weak learners are added one by one. Let us X and Y denote the instance space and the set of class labels, assuming
Y ={-1,+1}. And a training data set D= {(x1,y1),(X2,¥2),.... (Xm,¥m) } is given, where x; € X and y; € Y, where i=1,...,m. D; denotes the distribu-
tion of the weights at the t " learning round. Firstly, the algorithm assigns equal weights to all the training examples (Xiyi) (i€ {1,....m}). Then,
from the training dataset and Dy, it generates a base learner h; : X — Y, by calling the base learning algorithm. Next, it uses the training examples to
test h;, and the weights of the misclassified examples are increased. Therefore, an updated weight distribution D;.  is obtained. From the training
dataset and Dy, 1 the algorithm generates another base learner by calling again the base learning algorithm. This process is repeated T times or
rounds and the final learner is derived by weighted majority voting of T learners, where the weights of the learners are determined during the
training process. The base learning algorithm may be a learning algorithm which can use directly the weighted training examples, or the weights

can be exploited by sampling the training examples according to the weight distribution D;.
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Input: Dataset D = {(x,,¥,), (¥2,¥2), «+e» Xy Vi) }-
Base learning algorithm, L.
Number of rounds, T.
Process:
D,(i) = 1/m. //initialize the weight distribution
fort=1,..,T:
h, = L(D, D,); //train a base learner h, from D using distribution D,

€ = Pri.p,[h:(x; # y)]; //measure the error of h,

a, = %log (I-E‘); //determine the weight of h,

€t

Dpuy (i) = D@ {exp(—a,) if he(x;)) = ¥
e Z exp(a) if he(x) # i
= M /lupdate the distribution where Z, is a normalization
t
//factor which enables D, ., be a distribution

end.

Output: H(x) = sign(f(x)) = signQi- a:h (x))

FIGURE 1 The AdaBoost algorithm (Zhou, 2019)

Input: Dataset D = {(xy, ¥1), (X2, ¥2), o (s ¥m) }.
Base learning algorithm, L.

Number of rounds, T.

Process:
fort=1,..,T:
D, = Bootstrap(D); //generate a bootstrap sample from D
h; = L(D,) //train a base learner h,from the bootstrap sample
end.

Output: H, = argmaxyey Ni-q l(y = ht(x)) //the value of I, is 1 if o is true and 0 otherwise

FIGURE 2 The Bagging algorithm (Zhou, 2019)

RealAdaBoost (Schapire & Singer, 1997) is an improved version of AdaBoost which obtains a real value as a result, representing the probabil-
ity that a certain input pattern belongs to a certain class.

2.2 | Bagging algorithms

Bagging algorithms are independent ensemble methods that use homogeneous base models that learn in parallel, that is, independently from each
other, and their results are combined using different deterministic averaging process. In these algorithms (Breiman, 1996), multiple bootstrap sam-
ples are generated from the initial dataset, by randomly drawing some observations with replacement. Then, the base algorithms are used in each
generated sample, and their outputs are aggregated by means of some type of average. For example, simple average is commonly used in regres-
sion problems, where the outputs of the individual models are averaged. In the case of classification problems, simply majority vote or hard voting

are used, where the class that receives the majority of the votes is returned by the ensemble model. This allows obtaining combined models with
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lower variance than its components, and the required diversity of the ensemble methods is achieved by the sampling scheme. Despite its simplic-
ity, it is effective with limited data size and unstable base algorithms (Wang et al., 2014). The pseudocode of Bagging is shown in Figure 2.

Random Forest (Breiman, 2001) is the most popular bagging method where the base learning algorithms are decision trees. Each tree is fitted
on a bootstrap sample considering only a subset of features randomly chosen. This reduces the correlation between the different outputs and cre-
ates more robust models. In general, bagging requires large combination of models to perform well. On the contrary, Rotation Forest (Rodriguez
et al., 2006), a method for generating classifier ensembles also based on feature extraction and trees, is designed to work with less base models
and achieves similar or better performance than bagging or random forest.

Dagging and Random Subspace algorithms are also examples of independent ensemble methods, and like Bagging, the base classifiers are
trained with different samples of the training set. Dagging, however, uses disjoint, stratified samples instead of bootstrapping, and it is an effective
method when base learning algorithms have poor time complexity, since majority voting is used to combine the outputs of base learners (Onan
et al., 2016b). In Random Subspace algorithm, the different samples are obtained regarding the feature space instead of instance space (as is the
case in the Bagging algorithm). For this reason, the proposed method produces efficient and effective solutions for datasets with many redundant
features (Onan, 2017).

Boosting and bagging provide diversity by sub-sampling or re-weighting the existing training examples, and generally they perform well with
large ensemble sizes. However, small training sets limit the amount of ensemble diversity that these methods can obtain. Other learning algo-
rithms have tried to overcome these drawbacks. Decorate (Melville & Mooney, 2003) is a meta-learner for building diverse ensembles of classi-
fiers by using specially constructed artificial training examples that ensure diversity. Experiments have demonstrated that this technique is
consistently more accurate than the base classifier, bagging, and random forests. It also achieves higher accuracy than boosting on small training,
and comparable performance on larger datasets. MultiBoostAB (Webb, 2000) is an integration of AdaBoost with wagging (i.e., a class of bagging
requiring a base learning algorithm that can utilize training cases with differing weights). The different classifiers are established by applying the

training data of the MultiBoostAB algorithm, and then the classifier's weights are tuned to improve the precision of the prediction process.

2.3 | Ensemble combination

Ensemble Combination methods are heterogeneous classifier ensembles and include Stacking and Voting schemes algorithms. In Stacking, a
meta-model is trained on top of the predicted outputs returned by the base models. In this scheme, base learners are combined by a meta-learning
algorithm. First, base classifiers are trained to obtain predictions based on training instances. Based on the outputs of those classifiers, a series of
meta-level training data with the same classes of the original dataset are obtained. To obtain meta-level data, a similar procedure to k-fold cross-
validation is used (Kuncheva, 2014). In this, a meta-instance is generated by combining the outputs of base learners and true-class labels for each
instance. Then, the meta-classifier is trained with these meta-instances.

Voting is the simplest form of combining the base learning models, but choosing the appropriate models combination is a critical issue in
designing ensemble combination methods. There are different ways to combine the outputs of base classification algorithms, but in general voting
includes unweight and weight schemes. Majority voting, within unweight schemes, is one of the most effective and simplest methods. Neverthe-
less, recent studies indicate that the robustness and performance of the ensemble can be enhanced by using weighted voting schemes (Ekbal &
Saha, 2011). For example, in Onan et al. (2016b) a novel and efficient ensemble classification scheme based on an optimization technique using a
multi-objective differential evolution algorithm is proposed.

Regarding these heterogeneous classifier ensembles, high diversity of schemes is expected. Nonetheless, it has been empirically validated that
the use of some classification algorithms, rather than all the available ones, enhances the performance, accuracy, and efficiency of the ensemble
(Zhou et al., 2002). The process of selecting this subset is called ensemble pruning. There exist different ensemble pruning methods: exponential,
randomized, or sequential search, clustering-based, and so forth (Mendes-Moreira et al., 2012), but the application of hybrid algorithms is a prom-
ising research area (Onan et al., 2017).

3 | CLASSIFICATION ALGORITHMS

As we mentioned above, the identification of the base classifiers to be included in the ensemble is a key issue for predictive performance. Before
using any ensemble method, the base models need to be selected. In our case, we have experimented with five base learning algorithms based on
decision trees. Decision trees are among the most popular nonlinear machine learning algorithms. Computational efficiency and easy interpreta-
tion are some of their strengths. Regarding interpretability, explainable predictions are often considered an essential aspect in medical decision
making as they allow physicians to trust and use predictions in the right and effective way. The Explainable Artificial Intelligence (XAl) proposes
making a change towards more transparent Al (Adadi & Berrada, 2018). Decision trees divide an input space among a few small regions and make

predictions depending on a region, which makes this model more transparent and understandable. Simply reporting the decision path of a
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prediction is helpful to explain individual predictions of these trees (Lundberg et al., 2020). Ensemble models of decision trees, such as Random
Forest or Gradient Boosting, are high-performance prediction models, but their interpretability is limited. Usually, the number of regions in which
these algorithms divide an input space is over a thousand, which hinders the interpretability. Obviously, a trade-off between prediction perfor-
mance and interpretability must be achieved (Breiman, 2001b).

Additionally, decision tree methods exhibit the capability of modelling complex relationships between variables without strong model assump-
tions. They can identify important independent variables through the built tree, and they do not need a long training process and hence can save
time when the dataset is large. However, they are unstable; slight variations in the training data can cause different attribute selections at each
choice point within the tree. The effect can be significant since attribute choices affect all descendent subtrees. Ensemble methods solve the lack
of decision tree stability through the construction of multiple trees from different subsets of the initial dataset, which improves the robustness of

the final classification model (Al Snousy et al., 2011). In detail, the base learning algorithms selected in our study have been the following:

o Decision Stump: It is basically a one-level decision tree where the split at the root level is based on a specific attribute/value pair.

e J48: It is a slightly modified C4.5 algorithm (Quinlan, 1986). The C4.5 algorithm generates a decision tree for the given dataset by recursive par-
titioning of data. The decision is grown using depth-first strategy. The algorithm considers all the possible tests that can split the dataset and
selects a test that gives the best information gain.

e REPTree: It is a fast decision tree learner which builds a decision-regression tree using information gain as the splitting criterion and prunes it
using reduced-error pruning. It only sorts values for numeric attributes once.

e NBTree: It combines naive Bayesian classification and decision tree learning (Kohavi, 1996). In NBTree, a local naive Bayes is deployed on each
leaf of a traditional decision tree, and an instance is classified using the local naive Bayes on the leaf into which it falls. The algorithm for learn-
ing an NBTree is similar to C4.5. After a tree is grown, a naive Bayes is constructed for each leaf using the data associated with this leaf.

e ADTree (Alternating Decision Tree) is a generalization of decision trees, voted decision trees and voted decision stumps, where each decision
node is replaced by two nodes: a splitter node and prediction node (Freund & Mason, 1999). The splitter nodes indicate a condition, and the
prediction nodes contain real-valued numbers. An instance is classified by an ADTree, following all the paths for which the splitter nodes are
true, and adding the values of the prediction nodes that cross these paths. The classification associated with the path is the sign of the sum of
the prediction along the path.

Furthermore, other machine learning models have been explored as simple models:

o Support Vector Machine: It is used for data classification and regression in decision making. The general framework of this technique combines
the following components: (1) regularized linear learning models (such as classification and regression), (2) theoretical bounds, (3) convex dual-
ity and the associated dual-kernel representation, and (4) sparseness of the dual-kernel representation (Zhang, 2001). SVM finds a hyperplane
in the higher dimensional space to separate instances of different classes. The algorithm has a good generalization ability on newly encoun-
tered instances and can build suitable learning models in the case of a large amount of data.

o Bayesian Network: It is a probabilistic graphical model that represents a set of random variables and their conditional dependencies via a
directed acyclic graph. In this graph, nodes represent random variables, and the edges represent conditional dependencies. The dependency
between two nodes is described by the presence or absence of an arc between them and their causal influence by the direction of the arc.
Each node is associated with a probability function that takes as input a particular set of values for the node's parent variables and gives as out-
put the probability of the variable represented by the node.

e Random Tree. It is a tree drawn randomly from a set of possible trees, with n random features at each node, where each tree of the set has the
same chance of being sampled. Random trees can be generated efficiently, and the combination of large sets of them usually leads to accurate

models.

4 | MATERIALS AND METHODS
41 | Meningitis dataset

Our studies have been conducted from a dataset provided by SINAN, the Information System of the Health Department of the Brazilian Govern-
ment. This dataset collects information about patients suspected of having meningitis and had originally 69 attributes. Since the premise of our
study was to get a model of meningitis aetiology diagnosis in terms of observable symptoms and information obtained after a prior and fast analy-
sis of CSF, we removed all those attributes not containing these data. Table 2 lists the set of input attributes used in this study, showing also the
values they can take. The first column shows the identifier of the corresponding attribute in the dataset.

Each record contains all the information about a patient from the time he/she goes to a health center with symptoms compatible with menin-
gitis until the moment he/she finishes the treatment. In the case of having meningitis, the complete tests, treatments and diagnoses of the specific
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TABLE 2  Attributes selected from the original dataset, and their values (Lélis et al., 2018)

Id. Attribute Possible values
CS_AGE Age Numeric
CS_ZONE Living zone Urban and peri-urban, rural, unavailable
CS_SEXO Sex M, F, unavailable
CLI_CEFALE Headache Yes, no, unavailable
CLI_FEBRE Fever Yes, no, unavailable
CLI_VOMITO Vomiting Yes, no, unavailable
CLI_CONVUL Seizures Yes, no, unavailable
CLI_RIGIDE Neck stiffness Yes, no, unavailable
CLI_KERNIG Kernig/Brudzinski Yes, no, unavailable
CLI_ABAULA Bulging fontanelle Yes, no, unavailable
CLI_COMA Coma Yes, no, unavailable
CLI_PETEQU Petechiae/haemorrhagic suffusion Yes, no, unavailable
LAB_LEUCO Leucocytes Numeric
LAB_PROT Protein Numeric
LAB_GLICO Glycorrhachia Numeric
LAB_LINFO Lymphocytes Numeric
LAB_ASPECT CSF aspect (1) Cleared

(2) Purulent

(3) Haemorrhagic

(4) Murky

(5) Xanthochromic

(6) Other

(7) Ignored

(8) Unavailable
CON_DIAGNO Case classification Confirmed, Discarded, Unavailable
CON_DIAGES Type of causative agent (1) Meningococcaemia

)
(2) Meningococcal meningitis

(3) Meningococcal meningitis with meningococcaemia
(4) Tuberculous meningitis

(5) Meningitis by other bacteria

(6) Unspecified meningitis

(7) Aseptic meningitis

(8) Meningitis due to other aetiology

(9) Meningitis by Haemophilus

(10) Pneumococcal meningitis

type of meningitis, as well as the outcome of the treatment (healed or deceased), are also included in the record. We have records of cases in the
period from 2003 to 2016. These records were provided in blocks of periods. More specifically, we were provided with three different subsets of
records: firstly, we had available all records from 2007 to 2013; later, those in the interval between 2003 and 2006; and more recently, the
records corresponding to patients from 2014 to 2016. Figure 3 shows, on the left, a histogram with the number of records per year; the right side
of the figure shows the number of patients per year, the percentage over all records, and also (in the last column of the table) the percentage of
cases in each subset.

As mentioned above, each record has information about a certain patient which was treated for being suspected of having meningitis. Due to
this, different types of attributes can be found in the dataset. The main attributes used in this study are the following and can be organized into
three sets: (1) Information related to the person (attributes whose identifier has “CS_" as a prefix), such as his/her age, gender or living zone; note
that age is computed from the birthdate and the date of the patient's admission in the health center. (2) Observable symptoms (attributes with a
“CLI_” prefix), that is, headache, fever, vomiting, seizure, neck stiffness, Kernig's sign, bulging fontanelle, coma, petechiae, which are identified by
the physician during the triage, once the patient arrives for the first time to a health center or hospital. (3) Laboratory test results (attributes with
a “LAB_” prefix), that is, CSF aspect, proteins, glycorrhachia, neutrophils, and lymphocytes. Furthermore, other attributes related to the diagnosis
are included in the dataset; namely, the confirmation of having meningitis (CON_DIAGNO) and the type of meningitis (CON_DIAGES).
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FIGURE 3 Number of cases per year in the original and the filtered datasets

4.2 | Data preprocessing

As a first stage in data preprocessing, we deleted those records of no use for the purpose of our study. Accordingly, we removed all the records
corresponding to patients either not having meningitis or having been diagnosed with other types of meningitis such as the meningococcal dis-
ease, tuberculous meningitis, and meningitis due to other etiologies. Thus, we kept only those records of patients with bacterial or AM and, as a
result, the dataset length was reduced from 26,228 to 12,774 records. Finally, we removed all those records without any information about labo-
ratory test results and, so, were left with a new dataset with 12,420 records. In our previous studies, we also removed those records without
information on three or more symptoms. In this work, however, this was not necessary, since, after removing the records without any data of lab-
oratory tests, we got a dataset not fulfilling the requirement of missing information in more than three symptoms.

The information contained in the dataset was entered manually. For this reason, there can be found many records having missing values,
noisy data, and so forth. A first process of data cleaning was performed and, as a part of it, some outliers were fixed and replaced by normalized
values. Note that most of those outliers consisted in the erroneous addition of zeros to the corresponding values. Some inconsistencies were
found, as well, among attributes related to the final diagnosis. For instance, we found some meningitis cases where the causative agent attribute
indicated meningitis but, however, the case was classified either as discarded or unavailable.

43 | Methods

Despite that, a preliminary dimension reduction was accomplished in the dataset, keeping as a result only those attributes pertinent to our study
(personal data, symptoms, and CSF preliminary results). We also explored the utility of these attributes to analyse their relevance in the meningitis

aetiology classification. For this purpose, we applied several feature selection procedures to obtain a ranking of the most useful attributes (Witten
etal., 2016).

o Classifier Attribute: It evaluates the worth of a feature by using certain classifier. In our case, we have tested this technique with different clas-
sifiers such as NBTree, ADTree, J48, Bayes Net, and so forth.

o Correlation-based: It computes the Pearson correlation coefficient between each feature and the target attribute and ranks all features
according to it.

¢ Information gain-based: It is based on the concept of Shannon's entropy (or information gain), and thus selects attributes providing more infor-
mation with respect to the class (Hall, 1999).

e Gain ratio: This technique is an improvement of the previous one, which attempts to overcome its tendency to select attributes with large
number of values (Karegowda et al., 2010), using the entropy.
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e One Rule-based: With this selection criterion, features are ranked according to the accuracy of the One Rule classification algorithm
(Holmes & Nevill-Manning, 1995). This algorithm constructs a different prediction rule for each feature, and accordingly this criterion will select
the one which exhibits the smallest error.

o Relief: This selection criterion applies a feature weighting algorithm based on sample learning (Kira & Rendell, 1992). It detects the features
that are statistically relevant to the target attribute by computing neighbourhoods.

e Symmetrical uncertainty-based: It measures the symmetrical uncertainty of a feature with respect to the target attribute. Symmetrical uncer-
tainty (Singh et al., 2014) is a technique based on entropy and mutual information, often used to measure the relevance between two random

variables.

Table 3 shows the ranking provided by the seven feature selection techniques we have applied. As can be seen, there cannot be found a clear
agreement among these techniques, since attributes are ranked differently in each of them. Note also that, for the first technique, the table only
shows the ranking obtained with NBTree classifier, but results with other classifiers are aligned with it. This conclusion is consistent with the
results concerning feature selection we obtained in previous experiments (Lélis et al., 2018), where attribute relevance was explored in a set of
patient cases from 2007 to 2013.

The dataset was also imbalanced, and thus it contained many more samples from one class than from the other, which could lead to biased
classification towards the majority class (Ganganwar, 2012). More specifically, our dataset contained 69.41% cases of AM and 30.59% of
BM. Many approaches can be found in the literature to face this problem (e.g., Chawla et al., 2004). One of the most common approaches is
resampling the dataset with the goal of decreasing the effects caused by the imbalance of data (Batista et al., 2004). Two strategies can be used to
balance datasets: undersampling, where instances are eliminated to equalize the number of examples of each class; and oversampling, consisting in
generating new examples from the smaller class (Garcia & Herrera, 2009) to balance all classes length. These are precisely the two approaches we
followed in this study: on the one hand, we have extended the dataset by applying the SMOTE (Chawla et al., 2002), which generates “synthetic”
new records; on the other hand, we have subsampled the dataset by randomly removing a set of records from the target class with more records.
Accordingly, after this resampling stage, we had three different input datasets: the original (DS-Original), the one obtained after applying SMOTE
(DS-SMOTE), and finally the subsampled one (DS-Subsample). Eventually, we explored different classification models, which can be grouped into
two categories, depending on whether they use ensemble methods. Note that, in our previous works and even in preliminary studies we accom-
plished as a part of this work (Lélis et al., 2017, 2020), we observed that decision trees seem to be the machine learning technique which better
results provides in meningitis diagnosis. For this reason, in this paper, we only present the results obtained with these techniques independently

or combined through ensemble methods.

TABLE 3 Attribute ranking after applying feature selection techniques

Feature selection technique Attribute ranking
ClassifierAttribute (with LAB_PROT, CLI_FEBRE, CLI_CONVUL, CLI_VOMITO, CLI_CEFALE, LAB_GLICO, CS_ZONA, CS_SEXO,
NBTree) CLI_RIGIDE, CLI_KERNIG, CLI_ABAULA, CLI_COMA, LAB_LINFO, LAB_NEUTRO, LAB_LEUCO, LAB_ASPECT,

CLI_PETEQU, AGE

Correlation-based LAB_ASPECT, LAB_LEUCO, CLI_RIGIDE, CLI_CONVUL, CLI_COMA, AGE, CS_ZONA, CLI_ABAULA, LAB_PROT,
CLI_KERNIG, CLI_PETEQU, CLI_CEFALE, CLI_FEBRE, CS_SEXO, LAB_LINFO, LAB_GLICO, LAB_NEUTRO,
CLI_VOMITO

Gain Ratio LAB_ASPECT, LAB_GLICO, CLI_COMA, LAB_PROT, LAB_LEUCO, CLI_CONVUL, CLI_ABAULA, CLI_RIGIDE,
CS_ZONA, AGE, CLI_KERNIG, CLI_PETEQU, LAB_LINFO, LAB_NEUTRO, CLI_CEFALE, CLI_FEBRE, CS_SEXO,
CLI_VOMITO

Information Gain-based LAB_PROT, LAB_ASPECT, LAB_GLICO, LAB_LEUCO, AGE, CLI_RIGIDE, CLI_CONVUL, LAB_LINFO, CLI_COMA,
LAB_NEUTRO, CS_ZONA, CLI_ABAULA, CLI_KERNIG, CLI_PETEQU, CLI_CEFALE, CLI_FEBRE, CS_SEXO,
CLI_VOMITO

One Rule-based LAB_GLICO, LAB_LEUCO, LAB_PROT, LAB_ASPECT, LAB_NEUTRO, LAB_LINFO, CLI_COMA, AGE,

CLI_CONVUL, CLI_ABAULA, CS_ZONA, CLI_CEFALE, CS_SEXO, CLI_FEBRE, CLI_KERNIG, CLI_VOMITO,
CLI_RIGIDE, CLI_PETEQU

Relief LAB_ASPECT, AGE, CLI_FEBRE, CLI_CEFALE, CLI_VOMITO, CLI_CONVUL, LAB_LINFO, CLI_RIGIDE,
LAB_NEUTRO, LAB_LEUCO, CS_ZONA, CS_SEXO, CLI_COMA, CLI_KERNIG, CLI_ABAULA, CLI_PETEQU,
LAB_PROT, LAB_GLICO

Symmetrical Uncertainty-based =~ LAB_ASPECT, LAB_GLICO, LAB_PROT, LAB_LEUCO, CLI_RIGIDE, CLI_CONVUL, CLI_COMA, AGE, CS_ZONA,
CLI_ABAULA, LAB_LINFO, LAB_NEUTRO, CLI_KERNIG, CLI_PETEQU, CLI_CEFALE, CLI_FEBRE, CS_SEXO,
CLI_VOMITO
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TABLE 4 Hyperparameter values used in the experiments

Type Model

Ensemble AdaBoostM1
Bagging
Decorate

EnsembleSelection

MultiBoostAB

RandomForest

RealAdaBoost

RotationForest
Simple ADTree

BayesNet

J48

LADTree

REPTree

SVM

5 | RESULTS

Parameter
iterations

bag size percentage
iterations

iterations

desired ensemble size
iterations

algorithm

metric

num. model bags
iterations

iterations

bag size percentage
attribute importance
iterations

iterations

group size

expand search path
iterations

estimator

search algorithm
binary splits

min. instances per leaf
confidence factor
boosting iterations
pruning

min. variance
penalty

kernel

gamma

Value range
[2,128]

[10, 100]
[2,128]
[2,128]

5x,x € [1, 20]
2,128]

forward selection, backward elimination, both, best model}

10, 100]

2,128]

[2,128]

[10, 100]

{true, false}

[2,128]

[2,128]

[2,10]

{all paths, the heaviest, the best z-pure, random}
[2,128]

{BN, simple, BMA, multinomial BMA}

[
{
faccuracy, RMSE, precision, recall, f-score}
[
[

{K2, genetic search, hill climber, simulated annealing, TAN}
{true, false}

[1, 64]
{0,0.25,0.5,0.75, 1}

[2,128]

{true, false}

{0.1,0.01, 0.001, 0.0001, 0.00001}
{0.001, 0.1, 1, 10, 100, 1000}
{linear, polynomial, radial, sigmoid}

{1,0.1,0.01, 0.001, 0.0001}

Training and model evaluation have been implemented in Java programing language and using Weka machine learning API (Frank et al., 2016).
Table 4 shows the hyperparameters used in our experiments to tune the models. Each row contains a hyperparameter and the set of values for
which it was tested. Square brackets represent intervals, and curly ones the set of tested values. Each model was tested with all combinations of
its hyperparameter values to find its best performance. To measure the performance of the prediction models we have used several indicators.
The goal of a classification model is to map each one of the instances from a certain dataset to a predicted class. All of them are based on the con-
fusion matrix (or contingency table) which summarizes the relationship among instances and their classification made by the corresponding model.
This matrix consists of four values: the number of positive cases which have been classified correctly is the true positive (TP) rate, those classified
incorrectly are the false negatives (FN); regarding the number of negative cases, those which have also been classified as negative by the model
are the true negative (TN) cases, and those classified (incorrectly) as positive make up the false positive (FP) rate. Using these values, the following

indicators can be computed:

.. TP
Precision = TP FP (1)
Accuracy = TP+TN (2)

TP+TN+FP+FN
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Recall =

.
TP+ FN (3)

F _ measure — 2 x Precision x Recall ()
" Precision+ Recall

Accuracy is a statistical measure representing how well the model performs the classification. This indicator was used traditional in classifica-
tion problems (Davis & Goadrich, 2006); however, many authors have argued (Provost et al., 1998) that using only this measure indicator can be
misleading. In this sense, precision (or positive predictive value) shows the effect of the large number of negative examples on the model's perfor-
mance, by comparing FP to TP. Thus, and applied particularly to our problem, it represents the model capability of identifying real AM and BM
cases. Recall (true positive rate or sensitivity) shows the model's ability to find relevant cases; that is, among all cases having AM or BM, which ones
are identified correctly by the model. Both indicators take values between 0 and 1 and are usually related through another indicator, F-measure,
which is the harmonic mean of Precision and Recall. Cohen's kappa is a robust statistic classically used for measuring either interrater or interrater
reliability testing. It is useful also as a classification accuracy indicator in multiclass classification problems, to indicates how much better model
performance is in comparison to other classifiers that simply guess randomly in terms of each class frequency. According to Landis and
Koch (1977), it ranges from —1 to 41, where O represents the amount of agreement that can be expected from random chance, and 1 represents
perfect agreement between the raters. Values lower than or equal to O indicate no agreement, between 0.01 and 0.20 as none to slight, between
0.21 and 0.40 as fair, between 0.41 and 0.60 as moderate, between 0.61 and 0.80 as substantial, and, finally, between 0.81 and 1.00 as almost
perfect agreement. Area Under the Curve (AUC) can take two different values depending on whether it represents the ROC curve or the PR curve.

The Receive Operating Characteristic (ROC) curve shows graphically, and according to certain class discrimination threshold, the relationship

TABLE 5 Performance indicator of models for predicting meningitis aetiology in the original dataset, where best results are in bold

Type Model Kappa Accuracy Precision Recall F-measure AUC-ROC AUC-PR

Ensemble AdaBoostM1-+ADTree 0.67 0.82 0.86 0.86 0.86 0.90 0.91
AdaBoostM1+-DecisionStump 0.63 0.80 0.85 0.85 0.84 0.89 0.90
AdaBoostM1+NBTree 0.66 0.82 0.86 0.86 0.86 0.88 0.89
Bagging+ADTree 0.67 0.82 0.86 0.86 0.86 0.91 0.92
Bagging+REPTree 0.67 0.82 0.86 0.87 0.86 0.91 0.92
Bagging+NBTree 0.69 0.83 0.87 0.87 0.87 0.92 0.93
Decorate+ADTree 0.66 0.82 0.86 0.86 0.86 0.91 0.92
Decorate+J48 0.63 0.80 0.85 0.85 0.85 0.89 0.90
Decorate+NBTree 0.69 0.83 0.87 0.87 0.87 0.91 0.92
EnsembleSelection 0.66 0.82 0.86 0.86 0.86 0.90 091
MultiBoostAB+ADTree 0.67 0.82 0.86 0.87 0.86 0.91 091
MultiBoostAB+DecisionStump 0.55 0.75 0.83 0.83 0.82 0.87 0.88
MultiBoostAB+NBTree 0.69 0.84 0.87 0.87 0.87 0.90 0.90
RandomForest 0.66 0.81 0.86 0.86 0.86 0.91 0.92
RealAdaBoost+ADTree 0.69 0.83 0.87 0.88 0.87 0.92 0.93
RealAdaBoost-+DecisionStump 0.59 0.78 0.83 0.83 0.83 0.89 0.89
RealAdaBoost+NBTree 0.68 0.83 0.87 0.87 0.87 0.92 0.93
RotationForest+ADTree 0.67 0.82 0.86 0.86 0.86 091 0.92
RotationForest+J48 0.69 0.83 0.87 0.87 0.87 0.92 0.92

Simple ADTree 0.66 0.82 0.86 0.86 0.86 0.91 0.92
BayesNet 0.65 0.82 0.85 0.85 0.85 0.91 0.92
J48 0.64 0.80 0.86 0.86 0.85 0.89 0.89
LADTree 0.60 0.78 0.83 0.84 0.83 0.88 0.89
NBTree 0.68 0.83 0.86 0.87 0.86 0.92 0.93
RandomTree 0.57 0.78 0.82 0.82 0.82 0.86 0.86
REPTree 0.64 0.80 0.85 0.86 0.85 0.89 0.90

SVM 0.62 0.82 0.85 0.85 0.84 0.80 0.80
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TABLE 6 Performance indicator of models for predicting meningitis aetiology in the SMOTE dataset, where best results are in bold

Type Model Kappa Accuracy Precision Recall F-measure AUC-ROC AUC-PR

Ensemble AdaBoostM1-+ADTree 0.69 0.84 0.85 0.85 0.85 0.92 0.91
AdaBoostM1+DecisionStump 0.63 0.82 0.82 0.82 0.82 0.90 0.90
AdaBoostM1-+NBTree 0.73 0.87 0.87 0.87 0.87 0.92 0.92
Bagging+ADTree 0.69 0.84 0.84 0.84 0.84 0.92 0.92
Bagging+NBTree 0.78 0.89 0.89 0.89 0.89 0.95 0.95
Bagging+REPTree 0.71 0.85 0.86 0.86 0.86 0.93 0.93
Decorate+ADTree 0.67 0.84 0.84 0.84 0.84 0.92 0.91
Decorate+J48 0.70 0.85 0.85 0.85 0.85 0.92 091
Decorate+NBTree 0.76 0.88 0.88 0.88 0.88 0.94 0.94
EnsembleSelection 0.70 0.85 0.85 0.85 0.85 0.92 0.92
MultiBoostAB+ADTree 0.69 0.84 0.84 0.84 0.84 0.92 091
MultiBoostAB+DecisionStump 0.56 0.78 0.78 0.78 0.78 0.85 0.83
MultiBoostAB+NBTree 0.78 0.89 0.89 0.89 0.89 0.94 0.93
RandomForest 0.72 0.86 0.86 0.86 0.86 0.93 0.93
RealAdaBoost+ADTree 0.73 0.86 0.87 0.87 0.87 0.94 0.94
RealAdaBoost-+DecisionStump 0.63 0.81 0.82 0.82 0.81 0.90 0.89
RealAdaBoost+NBTree 0.76 0.88 0.88 0.88 0.88 0.94 0.94
RotationForest+ADTree 0.69 0.85 0.85 0.85 0.85 0.93 0.93
RotationForest+J48 0.73 0.87 0.87 0.87 0.87 0.94 0.93

Simple ADTree 0.67 0.84 0.84 0.84 0.84 0.92 0.91
BayesNet 0.72 0.86 0.86 0.86 0.86 0.93 0.93
J48 0.69 0.84 0.85 0.85 0.84 0.90 0.89
LADTree 0.62 0.81 0.81 0.81 0.81 0.89 0.88
NBTree 0.76 0.88 0.88 0.88 0.88 0.94 0.94
RandomTree 0.60 0.80 0.80 0.80 0.80 0.87 0.85
REPTree 0.68 0.84 0.84 0.84 0.84 0.91 0.91
SVM 0.69 0.85 0.85 0.85 0.84 0.84 0.84

between the TP rate and the FP rate, whereas Precision-Recall (PR) curve shows the relationship between precision and recall. Thus, ROC seems
to be more suitable to graphically illustrate the model's performance when having two or more classes and PR in those cases where we only have
a binary classification. AUC takes values between O and 1 and provides an aggregated measure of performance across all possible classification
thresholds. The higher its value, the better the model.

To evaluate the performance of our studies, we have used all indicators explained above. For each machine learning model, we have used
10-cross fold validation which, in turn, has also been repeated 10 times. Tables 5-7 summarize these results, which have been obtained after
exploring those models, using our three versions of the dataset, that is, the original version (Table 5), the SMOTE dataset (Table 6), and the
subsampled one (Table 7). Models have been grouped into two categories in terms of whether or not they involve ensemble methods. The first
19 models correspond to ensemble techniques, that is, AdaBoost (with ADTree, Decision stump and NBTree), Bagging (with ADTree, NBTree and
REPTree), Decorate (with ADTree, J48 and NBTree), Ensemble selection, MultiBoostAB (with ADTree, Decision stump and NBTree),
RealAdaBoost (with ADTree, Decision stump and NBTree), Random forest and Rotation forest (with ADTree and with J48); and the remaining
eight models are based on other simple machine learning approaches: ADTree, Bayesian networks, J48, LADTree, NBTree, Random tree, REPTree,
and SVM. Classification indicators, that is, the percentage of cases classified correctly and incorrectly, kappa, TP, FP, TN, FN, accuracy, precision,
recall, F-measure, and AUC values refer to weighted averages among the two classes (AM and BM). Table 8 summarizes the indicators of the five
models which have obtained the best performance indicators for each version of the dataset. As can be seen, only TP, FP, precision, and recall
values per meningitis aetiology have been included in the table. Note also that in all cases we have observed that models perform much better
when they identify AM cases: an average of 29% of improvement in DS-Original, a 10% in DS-SMOTE and 8% in DS-Subsample. Results show, in
best models of the SMOTE dataset and the original one, TP values over 0.91 for AM identification.
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TABLE 7

Type

Ensemble

Simple

TABLE 8

Dataset

Original

SMOTE

Subsample

Model

AdaBoostM1-+ADTree
AdaBoostM1+DecisionStump
AdaBoostM1-+NBTree
Bagging+ADTree
Bagging+NBTree
Bagging+REPTree
Decorate+ADTree
Decorate+J48
Decorate+NBTree
EnsembleSelection
MultiBoostAB+ADTree
MultiBoostAB+DecisionStump
MultiBoostAB+NBTree
RandomForest
RealAdaBoost+ADTree
RealAdaBoost+DecisionStump
RealAdaBoost+NBTree
RotationForest+ADTree
RotationForest+J48

ADTree

BayesNet

J48

LADTree

NBTree

RandomTree

REPTree

SVM

Model

Bagging+NBTree
Decorate+-NBTree
MultiBoostAB+NBTree
RealAdaBoost+ADTree
RotationForest+J48
Bagging+NBTree
Decorate+NBTree
MultiBoostAB+NBTree
NBTree
RealAdaBoost+NBTree
Bagging+ADTree
Bagging+NBTree
MultiBoostAB+ADTree
MultiBoostAB+NBTree
RealAdaBoost+ADTree

Kappa
0.67
0.65
0.65
0.68
0.68
0.66
0.66
0.66
0.67
0.65
0.68
0.55
0.68
0.66
0.69
0.64
0.68
0.67
0.68
0.67
0.64
0.65
0.58
0.68
0.56
0.65
0.62

Accuracy

0.84
0.82
0.83
0.84
0.84
0.83
0.83
0.83
0.84
0.83
0.84
0.77
0.84
0.83
0.85
0.82
0.84
0.84
0.84
0.83
0.82
0.82
0.79
0.84
0.78
0.82
0.81

Precision

0.84
0.82
0.83
0.84
0.84
0.83
0.83
0.83
0.84
0.83
0.84
0.78
0.84
0.83
0.85
0.82
0.84
0.84
0.84
0.84
0.82
0.83
0.79
0.84
0.78
0.83
0.81

Recall
0.84
0.82
0.83
0.84
0.84
0.83
0.83
0.83
0.84
0.83
0.84
0.77
0.84
0.83
0.85
0.82
0.84
0.84
0.84
0.83
0.82
0.82
0.79
0.84
0.78
0.82
0.81

F-measure

0.84
0.82
0.83
0.84
0.84
0.83
0.83
0.83
0.84
0.82
0.84
0.77
0.84
0.83
0.85
0.82
0.84
0.84
0.84
0.83
0.82
0.82
0.79
0.84
0.78
0.82
0.81
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Performance indicator of models for predicting meningitis aetiology in the subsampled dataset, where best results are in bold

AUC-ROC AUC-PR
091 0.90
0.89 0.88
0.88 0.87
0.91 0.91
0.92 0.91
0.90 0.90
0.90 0.90
0.89 0.88
091 0.91
0.90 0.90
0.91 0.90
0.85 0.83
0.90 0.89
091 0.90
0.92 0.92
0.89 0.88
091 091
091 0.91
091 0.91
0.91 0.90
0.90 0.90
0.88 0.86
0.86 0.84
0.91 0.91
0.85 0.83
0.89 0.88
0.81 0.81

Separated performance indicators when predicting AM and BM for the five models with best average performance in each dataset

AM BM

TP FP Precision Recall TP FP Precision Recall
0.928 0.259 0.891 0.928 0.741 0.072 0.820 0.741
0.944 0.290 0.881 0.944 0.710 0.056 0.848 0.710
0.926 0.255 0.982 0.926 0.745 0.074 0.815 0.745
0.945 0.280 0.884 0.945 0.720 0.055 0.851 0.720
0.940 0.282 0.883 0.940 0.718 0.060 0.842 0.718
0.926 0.148 0.876 0.926 0.852 0.074 0.910 0.852
0.924 0.163 0.865 0.924 0.883 0.076 0.906 0.837
0.918 0.145 0.878 0.918 0.855 0.082 0.855 0.878
0.921 0.164 0.864 0.921 0.836 0.079 0.903 0.836
0.919 0.163 0.865 0.891 0.837 0.081 0.901 0.837
0.868 0.190 0.821 0.868 0.810 0.132 0.860 0.810
0.881 0.199 0.816 0.881 0.801 0.119 0.871 0.801
0.866 0.185 0.824 0.866 0.815 0.134 0.859 0.815
0.876 0.192 0.820 0.876 0.808 0.124 0.867 0.808
0.877 0.186 0.825 0.877 0.814 0.123 0.868 0.814

Abbreviations: AM, aseptic meningitis; BM, bacterial meningitis; FP, false positive; TP, true positive.
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FIGURE 4  Accuracy for each model and dataset. Blue bars represent indicators on original dataset; yellow, on SMOTE dataset; and green, on
subsampled dataset
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FIGURE 5 Precision for each model and dataset. Blue bars represent indicators on original dataset; yellow, on SMOTE dataset; and green, on
subsampled dataset

Figures 4-6 show the values of three performance indicators (accuracy, precision, and recall) obtained for each technique in each dataset.
Note that only the 24 models with the highest results have been included. The analysed techniques have been represented in the Y-axis, whereas
values of indicators are shown in the X-axis. Each figure represents a different indicator, with bars of colours to separate among the corresponding
dataset (original in blue, SMOTE in yellow, and subsampled in green). Moreover, as can be seen in these figures, coloured bars are sorted in des-
cending order, from left to right, in terms of their indicator values. Figures 7-9 illustrate similar information (including in this case all 27 models)
but with a graphical ranking of models. Each graphic shows the corresponding value (in descending order) of the performance indicator, that is,
accuracy (Figure 7), precision (Figure 8), and recall (Figure 9). In addition, graphics are structured into three columns, corresponding to the dataset
analysed, that is, original, SMOTE, and subsampled, respectively. Techniques are ranked depending on the value they have obtained in each indi-
cator and represented using circles of different colours (see the legend next to the graphic of recall). Since there are many models, colours are
repeated, but in the legend linking each colour with the technique they are also ordered in terms of the model position.

Finally, the three graphics of Figures 10-12 show the relationship between precision (X-axis) and recall (Y-axis) of each technique in terms of

whether or not they use ensemble methods. Techniques have been represented with blue circles, for ensemble models, and orange, for simple
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FIGURE 6 Recall for each model and dataset. Blue bars represent indicators on original dataset; yellow, on SMOTE dataset; and green, on
subsampled dataset
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FIGURE 7 Ranking of models in terms of accuracy

models. A different graphic has been used to illustrate the relationship in the three datasets: Figure 10 for DS-Original, Figure 11 for DS-SMOTE
dataset, and Figure 12 in the case of DS-Subsample.

6 | DISCUSSION

Results of Tables 5-7 suggest that, in general, ensemble methods involving decision trees perform better than simple techniques. If we rank the
studied techniques, in terms of performance indicators, 100% in the first quartile involve ensemble methods in Table 7 (DS-Subsample), and 86%

in Tables 5 and 6 (i.e., DS-Original and DS-SMOTE). As we mentioned above, the ensemble methods solve the lack of decision trees stability
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SpreadSubSample

SpreadSubSample

Model

Il AdaBoostM1+ADTree
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ADTree

M Bagging+ADTree
Bagging+NBTree

Il Bagging+REPTree
BayesNet

W Decorate+ADTree
Decorate+J48

B Decorate+NBTree
EnsembleSelection

® W

LADTree
MultiBoostAB+ADTree

M MultiBoostAB+DecisionStump
MultiBoostAB+NBTree

. NBTree
RandomForest

M RandomTree
RealAdaBoost+ADTree

I RealAdaBoost+DecisionStump
RealAdaBoost+NBTree

M RePTree
RotationForest+ADTree

M RotationForest+J48
SVM

Model

M AdaBoostM1+ADTree
AdaBoostM1+DecisionStump

W AdaBoostM1+NBTree
ADTree

[ Bagging+ADTree
Bagging+NBTree

M Bagging+REPTree
BayesNet

M Decorate+ADTree
Decorate+J48

M Decorate+NBTree
EnsembleSelection

W a8
LADTree
MultiBoostAB+ADTree

B MultiBoostAB+DecisionStump
MultiBoostAB+NBTree

M NBTree
RandomForest

M RandomTree
RealAdaBoost+ADTree

M RealAdaBoost+DecisionStump
RealAdaBoost+NBTree

M RePTree
RotationForest+ADTree

B RotationForest+)48
SVM

through the construction of multiple trees from different subsets of the initial dataset in order to improve the robustness of the final classification

model (Caruana et al., 2004). The best values are obtained with DS-SMOTE, that is, 0.89 for accuracy, precision, recall and f-measure, and 0.95

for AUC. They have been achieved by Bagging ensemble method combined with NBTree (i.e., a simple decision tree with Naive Bayes classifiers

at its leaves), leading thus to 89.14% of patients whose meningitis aetiology was correctly identified. This result improves the performance we got

in our previous work (Lélis et al., 2020) where we only obtained an average of 79% of success. Results achieved by Bagging with precision are

followed closely by other ensemble techniques (MultiBoost, Decorate and RealAdaBoost), again in combination with NBTree, and even this model
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Precision vs. Recall for original dataset
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FIGURE 10 Precision versus Recall for DS-Original
Precision vs. Recall for SMOTE dataset
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FIGURE 11 Precision versus Recall for DS-SMOTE dataset

itself exhibits good results. All these combinations achieve successful diagnostics over 88% and show AUC over 0.93. Other tested techniques,

such as stacking and voting ensemble methods, exhibited worse results and, for this reason, have not been included in the table.
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Precision vs. Recall for subsample dataset
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FIGURE 12 Precision versus Recall for DS-Subsample dataset
TABLE 9 Paired t-test results of three versions of dataset in terms of accuracy (p-value <0.05)
t-value p-value
SMOTE versus Original 14.544 0.0000
Original versus SpreadSubsample 6.863 0.0000
SMOTE versus SpreadSubsample 6.704 0.0000

When datasets are imbalanced, which is a problem often found in real world problems, machine-learning algorithms usually produce
degenerated models where the minority class is not properly taken into account (Ganganwar, 2012). For this reason, in this work we have
explored two strategies, SMOTE and SpreadSubsample, to equate the two classes of our original dataset. SMOTE approach for balancing datasets
makes models more accurate and generally shows best results in most indicators. More concretely, if we group and rank all 81 results from
Tables 5-7, the first quartile of that global ranking, excepting two of the lowest positions, is occupied by models with DS-SMOTE. The 15 first
positions in terms of accuracy, the eight firsts in precision, and the five first in recall and f-measure are achieved with DS-SMOTE. DS-SMOTE
improves the highest value of accuracy, obtained from DS-Original, from 0.84 to 0.89 (6%), and from 0.87 to 0.89 (2%) in precision, recall and f-
measure. DS-Subsample, however, only gets to improve the accuracy regarding DS-Original (from 0.84 to 0.85, 1%), but exhibits a worst perfor-
mance in precision, recall and f-measure (0.87 vs. 0.85). Therefore, overall, the size of the dataset seems to be relevant, since best indicator values
can be found in the largest datasets, that is, those generated by oversampling. To explore this hypothesis, the statistical paired t-test has been
conducted to compare accuracy between the three different versions of the dataset (Table 9). This test explores if differences between means are
statistically significant, comparing the p-value to the significance level. For our study, a p-value less than 0.05 was considered statistically signifi-
cant, and as can be seen in Table 9, results confirm the statistical significance of differences.

In Figures 4-9, we can see the performance of each model in each dataset. As demonstrated, the worst performances, in terms of accuracy,
precision and recall, are often achieved with the subsampled dataset. In this sense, the highest values are always obtained with SMOTE dataset

and ensemble-based models, and generally, best performance in all dataset and indicators is exhibited in models involving ensemble techniques.
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More specifically, in the case of accuracy, the best results (22 over 27 models, 81%) are obtained with the SMOTE dataset, and in 96% of cases
(26 over 27) model performance is equal or better than with other dataset (Figures 4 and 7). For precision and recall, however, in most models the
raking is leaded when the original dataset is used (52%, 14 over 27 models, for precision; 59%, 16 over 27 models, for recall), followed by the
SMOTE in second position, as seen in Figures 5 and 6, in the graphics of those two indicators where the first values per model (see the first col-
umn) mostly correspond to the original dataset. Regarding the relationship between these two indicators, the goal is to maximize both values.
Generally speaking, models which perform better in one of these parameters tend to exhibit worse values in the other. Figures 10-12 show this
tradeoff between precision and recall in our models, where the best results would be those in the upper right part of the graphic; that is, those
with high precision and recall values. As can be seen, ensemble methods generally lead to models with values over 0.8 (except when combined
with DecisionStump, as expected, since this is a very simple model that codes just one decision rule). If in the whole ranking we only consider
those models with precision, recall and f-measure values equal or greater than 0.8, there is 73% models (53 over 73), involving ensemble methods,
more specifically, in the case of DS-Subsample, 75% models; in DS-SMOTE, 69%; and in DS-Original, 63%. In the case of the SMOTE dataset
(Figure 11), NBTree combined with Bagging and MultiBoostAB methods exhibits the best score for both values, closely followed by Decorate with
NBTree, NBTree itself and combined with RealAdaBoost. For the original dataset (Figure 10), ensemble methods again show the best perfor-
mances (however, worse than those from SMOTE dataset) when combined with ADTree, NBTree, and J48. With respect to the subsampled
dataset (Figure 12), their results are generally worse than the ones achieved with the other datasets. The best performance (0.85 for both preci-
sion and recall) in undersampling is achieved by ReadAdaBoost with ADTree.

Internal reliability testing, that is, Cohen's kappa statistic, which evaluates the model utility, is greater than 0.6 in 91% cases (suggesting, thus,
a substantial agreement in most models) and also greater than 0.7 in those models exhibiting the best performance in the rest of indicators (values
equal or greater than 0.85 in accuracy, precision and recall, and greater than 0.9 in AUC in those cases). Generally, the same can be said about
AUC in both ROC and PR curves: 69% of models show AUC values over 0.9, and this suggests that they are good in differentiating between AM
and BM. Only seven models, those which perform worst in all the indicators (8%), show an FN rate over 0.2, and in the rest, the average rate
is 0.15.

In general terms, this study reveals high agreement on which decision models are good enough, taking into account the different performance
indicators analysed in this work. Models which exhibit the best performance do so in most parameters. This high agreement suggests the suitabil-
ity of those models for predicting the meningitis aetiology. In this sense, we can conclude that ensemble methods improve diagnosis of meningitis
aetiology when combined with decision tree-based models, in comparison to simple machine-learning techniques.

The approaches to differentiate between AM and BM we have found in the literature are based on parameters taken from invasive test, that
is, the CSF (Gowin et al., 2017; Revett et al., 2006). Our proposal, however, is the first method that uses ensemble algorithms to discriminate
between AM and BM in terms of observable symptoms and information obtained after a prior and fast analysis of CSF. Furthermore, we have
used a much larger dataset (in comparison to those included in the literature) that exhibits an outstanding classification performance with a ROC
area of 0.95. Thus, in terms of the assistance in the medical diagnosis problem, our study can significantly contribute to a fast and early diagnosis
concerning the etiological origin of meningitis, more specifically with regard to differentiating between viral and BM.

Unfortunately, the ensemble methods have some shortcomings. Although the empirical analysis indicates that these methods generally yield
better predictive performance, these usually exhibit higher computation cost when compared to simple machine-learning models. In fact, in our
experiments (run in a 2.8 GHz 4 kernels Intel i7 processor), the CPU time of those models which exhibit the best performance is the highest.
NBTree, with an average of 15 s, is the second most time-consuming simple model (the first is SVM with 86 s). This time, when combined with
ensemble techniques, increases exponentially: 260 s with Bagging, 341 with MultiBoostAB, 816 with Decorate, and 145 with AdaBoostM1. Thus,
the computational cost could be a clear limitation of our best-performing classification models in those scenarios where model training time is cru-
cial. Additionally, models based on ensemble methods are less understandable in comparison to decision trees, which are more explainable and
have a better degree of acceptance among physicians. Nonetheless, they improve the robustness of the final classification model settling the lack
of decision trees stability. We can conclude, thus, that when classification models are being constructed, a trade-off between performance, run-
ning time, and explainability is needed. Unfortunately, in most situations, these three factors cannot be optimized, and depending on the classifi-
cation goals, one (or two) of those factors should be selected.

7 | CONCLUSIONS AND FUTURE WORKS

The high mortality and morbidity of BM demand early diagnosis to prevent deceases. Machine-learning techniques show their ability to solve clas-
sification tasks without prior knowledge of the domain. However, a minimal deviation from the learned behaviour is enough to misclassify an
instance not included in the training dataset (Parnas, 2017). For this reason, it is difficult to demonstrate with complete certainty that the predic-
tions made by a machine-learning system are adequate in all scenarios (including those that do not take into account the training data).

The main findings of this paper are summarized next:
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o We have made an extensive empirical study on predictive performance of ensemble methods and other classification models regarding menin-
gitis aetiology. More concretely, we have explored eight different simple machine-learning models and 19 ensemble methods. The selection of
the simple learning techniques has been accomplished in terms of our experience in previous studies of meningitis diagnosis. The performances
exhibited by the ensemble methods combined with decision trees indicate an average accuracy, precision, recall, and f-measure of over 85%
and with AUC values over 90%. Our results suggest that NBTrees combined with ensemble techniques are the most suitable approach for
predicting the meningitis aetiology.

o To get accurate models, the size of datasets seems to be more relevant than its balancing. SMOTE resampling technique leads to better classifi-
cation performance and, generally, achieves the best results in most indicators. In this sense, subsampling often leads to the worst perfor-
mance. Accordingly, if we consider the two factors that have characterized datasets in this study, that is, the size and its balancing, size seems
to be more relevant in getting accurate models.

e To the best of our knowledge, we have used the largest dataset regarding predictions about not only meningitis aetiology but any other aspect
of this disease. A weakness of machine-learning classifiers that in many cases put their validity into question is precisely the use of small
datasets. In our case, the length of our dataset after applying filtering techniques is of 12,420 records. In comparison to the other work we
have found on AM versus BM diagnosis (D'Angelo et al., 2019), our proposal uses a 30% larger dataset and only involves non-invasive and

early CSF indicators, contributing to a faster diagnosis.

With the use of ensemble algorithms, it is possible to improve the lack of robustness of simple learning techniques, and more specifically of deci-
sion trees. Ensemble algorithms improve machine-learning performance by combining multiple models, as can be seen from the results we have
obtained. Therefore, we can conclude that ensemble methods, successfully applied in different medical diagnosis domains, seem to be also suit-
able for making diagnosis of meningitis aetiology.

Our near future work will mainly focus on incorporating this model in our decision support system to explore the behaviour of all our
machine-learning models when they work together. Furthermore, we would like to explore the transferability of our model when other input

datasets of meningitis cases are used (for instance, from other countries) and even with information of other diseases.
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