1,386 research outputs found

    Arrhythmia ECG Noise Reduction by Ensemble Empirical Mode Decomposition

    Get PDF
    A novel noise filtering algorithm based on ensemble empirical mode decomposition (EEMD) is proposed to remove artifacts in electrocardiogram (ECG) traces. Three noise patterns with different power—50 Hz, EMG, and base line wander – were embedded into simulated and real ECG signals. Traditional IIR filter, Wiener filter, empirical mode decomposition (EMD) and EEMD were used to compare filtering performance. Mean square error between clean and filtered ECGs was used as filtering performance indexes. Results showed that high noise reduction is the major advantage of the EEMD based filter, especially on arrhythmia ECGs

    Data-Driven ECG Denoising Techniques for Characterising Bipolar Lead Sets along the Left Arm in Wearable Long-Term Heart Rhythm Monitoring

    Get PDF
    Abnormal heart rhythms (arrhythmias) are a major cause of cardiovascular disease and death in Europe. Sudden cardiac death accounts for 50% of cardiac mortality in developed countries; ventricular tachycardia or ventricular fibrillation is the most common underlying arrhythmia. In the ambulatory population, atrial fibrillation is the most common arrhythmia and is associated with an increased risk of stroke and heart failure, particularly in an aging population. Early detection of arrhythmias allows appropriate intervention, reducing disability and death. However, in the early stages of disease arrhythmias may be transient, lasting only a few seconds, and are thus difficult to detect. This work addresses the problem of extracting the far-field heart electrogram signal from noise components, as recorded in bipolar leads along the left arm, using a data driven ECG (electrocardiogram) denoising algorithm based on ensemble empirical mode decomposition (EEMD) methods to enable continuous non-invasive monitoring of heart rhythm for long periods of time using a wrist or arm wearable device with advanced biopotential sensors. Performance assessment against a control denoising method of signal averaging (SA) was implemented in a pilot study with 34 clinical cases. EEMD was found to be a reliable, low latency, data-driven denoising technique with respect to the control SA method, achieving signal-to-noise ratio (SNR) enhancement to a standard closer to the SA control method, particularly on the upper arm-ECG bipolar leads. Furthermore, the SNR performance of the EEMD was improved when assisted with an FFT (fast Fourier transform ) thresholding algorithm (EEMD-fft)

    CaP: Cardiovascular Disease Prediction using a Delta Layer based Center Vector Activation-centric DCNN

    Get PDF
    Cardiac disease stands as a primary contributor to mortality, representing a prevalent category of chronic and life-threatening conditions. Therefore, early detection is imperative. While existing research has sought to predict heart disease (HD) through Electrocardiogram (ECG) signals, there remains room for enhancement. This study introduces a novel approach for early HD detection based on the Delta Layer with Center Vector Activation-centric Deep Convolutional Neural Network (DLCVA-DCNN) within its research framework, namely: CaP. Initially, the input ECG signals undergo preprocessing using a Weighted Covariance Kalman Filter (WCKF) to eliminate noise. Subsequently, the preprocessed data is bifurcated: one branch transforms it into a binary image, while the other decomposes the signal to identify peak segments. The decomposition employs the Bivariate Ensemble Empirical Mode Decomposition (BEEMD) method, and the Pan-Tompkins Algorithm (PTA) is applied to ascertain the highest-frequency segments. The coupling information is then extracted from these peaks. Simultaneously, depth features are extracted from the binary image. The Linear Approximate Functional Walrus Optimization Algorithm (LAFWOA) is employed to select pertinent features from the coupling and depth features. These selected features are input into the DLCVA-DCNN classifier to discriminate disease and standard signals. The experimental analysis compares the proposed methodology with conventional frameworks based on performance metrics, revealing that the proposed approach achieves higher accuracy than existing techniques

    Combination of the CEEM Decomposition with Adaptive Noise and Periodogram Technique for ECG Signals Analysis

    Get PDF
    The electrocardiogram (ECG) signal is a fundamental tool for patient treatment, especially in the cardiology domain, due to the high mortality rate of heart diseases. The main objective of this paper is to present the most optimal techniques that can link the processing and analysis of ECG signals. This work is divided into two steps. In the first one, we propose a comparison between some denoising techniques that can reduce noise affecting the ECG signals; these techniques are the empirical mode decomposition (EMD), the ensemble empirical mode decomposition (EEMD), and the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN). In the second one, we make a comparison of three time-frequency techniques: the Choi-Williams (CW), the periodogram (PE), and the smoothed pseudo Wigner-Ville (SPWV). Firstly, the obtained results illustrate the effectiveness of the CEEMDAN in reducing noise that interferes with ECG signals compared to other denoising methods. Secondly, they show that the periodogram time-frequency technique gives a good detection and localization of the main components in the time-frequency plan of ECG signals. This work proves the utility of the combination of the periodogram and CEEMDAN techniques in analyzing the ECG signals

    A robust ECG denoising technique using variable frequency complex demodulation

    Get PDF
    Background and Objective Electrocardiogram (ECG) is widely used for the detection and diagnosis of cardiac arrhythmias such as atrial fibrillation. Most of the computer-based automatic cardiac abnormality detection algorithms require accurate identification of ECG components such as QRS complexes in order to provide a reliable result. However, ECGs are often contaminated by noise and artifacts, especially if they are obtained using wearable sensors, therefore, identification of accurate QRS complexes often becomes challenging. Most of the existing denoising methods were validated using simulated noise added to a clean ECG signal and they did not consider authentically noisy ECG signals. Moreover, many of them are model-dependent and sampling-frequency dependent and require a large amount of computational time. Methods This paper presents a novel ECG denoising technique using the variable frequency complex demodulation (VFCDM) algorithm, which considers noises from a variety of sources. We used the sub-band decomposition of the noise-contaminated ECG signals using VFCDM to remove the noise components so that better-quality ECGs could be reconstructed. An adaptive automated masking is proposed in order to preserve the QRS complexes while removing the unnecessary noise components. Finally, the ECG was reconstructed using a dynamic reconstruction rule based on automatic identification of the severity of the noise contamination. The ECG signal quality was further improved by removing baseline drift and smoothing via adaptive mean filtering. Results Evaluation results on the standard MIT-BIH Arrhythmia database suggest that the proposed denoising technique provides superior denoising performance compared to studies in the literature. Moreover, the proposed method was validated using real-life noise sources collected from the noise stress test database (NSTDB) and data from an armband ECG device which contains significant muscle artifacts. Results from both the wearable armband ECG data and NSTDB data suggest that the proposed denoising method provides significantly better performance in terms of accurate QRS complex detection and signal to noise ratio (SNR) improvement when compared to some of the recent existing denoising algorithms. Conclusions The detailed qualitative and quantitative analysis demonstrated that the proposed denoising method has been robust in filtering varieties of noises present in the ECG. The QRS detection performance of the denoised armband ECG signals indicates that the proposed denoising method has the potential to increase the amount of usable armband ECG data, thus, the armband device with the proposed denoising method could be used for long term monitoring of atrial fibrillation
    • …
    corecore