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Abstract— Cardiac disease stands as a primary contributor to mortality, representing a prevalent category of chronic and life-threatening 

conditions. Therefore, early detection is imperative. While existing research has sought to predict heart disease (HD) through Electrocardiogram 

(ECG) signals, there remains room for enhancement. This study introduces a novel approach for early HD detection based on the Delta Layer 

with Center Vector Activation-centric Deep Convolutional Neural Network (DLCVA-DCNN) within its research framework, namely: CaP. 

Initially, the input ECG signals undergo preprocessing using a Weighted Covariance Kalman Filter (WCKF) to eliminate noise. Subsequently, 
the preprocessed data is bifurcated: one branch transforms it into a binary image, while the other decomposes the signal to identify peak 

segments. The decomposition employs the Bivariate Ensemble Empirical Mode Decomposition (BEEMD) method, and the Pan-Tompkins 

Algorithm (PTA) is applied to ascertain the highest-frequency segments. The coupling information is then extracted from these peaks. 

Simultaneously, depth features are extracted from the binary image. The Linear Approximate Functional Walrus Optimization Algorithm 
(LAFWOA) is employed to select pertinent features from the coupling and depth features. These selected features are input into the DLCVA-

DCNN classifier to discriminate disease and standard signals. The experimental analysis compares the proposed methodology with conventional 

frameworks based on performance metrics, revealing that the proposed approach achieves higher accuracy than existing techniques. 
 

Keywords- Depth Features; Coupling Information; Delta Layer; Linear Approximate Functional Walrus Optimization Algorithm (LAFWOA); 

Weighted Covariance Kalman Filter (WCKF); and Bivariate Ensemble Empirical Mode Decomposition (BEEMD). 

 

 

I.  INTRODUCTION  

ECG analysis has been integral to diagnosing cardiovascular 
pathology since the 20th century. The ECG signal reflects the 
heart’s electrical activity, and its waveform or 
rhythm alterations indicate underlying cardiovascular issues [1]. 
The signal is derived from the standard 12-lead ECG, which 
calculates electrical potential from ten electrodes positioned on 
various parts of the body surface—six on the chest and four on 
the limbs [2]. Sudden Cardiac Death (SCD) is a significant 
preventable cause of natural death, with a potential annual 
incidence of about 5 million cases worldwide [3]. 
Therefore, continuous heart monitoring is crucial. The ECG 
signal proves highly beneficial in early HD prediction. However, 
its quick variations in morphology, duration, and amplitude pose 
a challenge for effective classification in HD detection [4]. 
Several studies have recently focused on automatic HD 
detection. Neural Networks (NNs) have gained popularity for 
their adoption in models addressing the nonlinear- 
ity of heart anomaly classification. Relevant features of the 
signal are input into NN models for classification. Frequency 
domain features such as lower frequency, higher frequency, and 

significantly lower frequency are considered for ECG signal 
classification. Features are extracted from the PQRS wave, 
where the P wave reflects atrial activity, the PR interval 
measures the time for electrical conduction between nodes, and 
the QRS complex represents ventricular activity, with the QRS 
interval measuring the corresponding conduction time. Various 
Machine Learning (ML) and Deep Learning (DL) mechanisms 
have been employed to learn features for HD detection [10]. 
However, existing ML models often require signal processing 
steps involving feature extraction, selection, reduction, and 
classification, with limitations in identifying and utilizing 
appropriate features from ECG signals. To address these 
limitations, the proposed CaP model enhances the early HD 
prediction model by incorporating a DLCVA-DCNN-based 
approach using depth features and coupling information. 

A. Research Gap 

Research on cardiac disease and its early prediction 

using electrocardiogram (ECG) signals has seen significant 

advancements, but a notable research gap still exists. Despite 

numerous existing studies focusing on HD prediction, 
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improvements are deemed necessary in the current 

methodologies. The proposed CaP model introduces 

a novel framework for early HD detection, aiming to address 

the existing gaps in the field. 

One critical gap lies in the preprocessing stage, where 

the input ECG signals are subjected to a Weighted Covariance 

Kalman Filter (WCKF) for noise removal. While this step 

contributes to signal enhancement, the effectiveness of the 

WCKF in different noise scenarios and its adaptability to 

diverse datasets require further investigation. Additionally, 

converting preprocessed data into a binary image introduces a 

novel element in the research. However, the robustness of this 

binary representation across various ECG patterns and its 

impact on subsequent analyses necessitate deeper 

exploration. 

Composing the preprocessed signal for peak segment 

detection using Bivariate Ensemble Empirical Mode 

Decomposition (BEEMD) is another area that merits attention. 

The choice of BEEMD as the decomposition method and its 

comparative analysis with alternative decomposition techniques 

could provide insights into the most suitable approach for 

identifying peak segments in ECG signals. Moreover, using the 

Pan-Tompkins Algorithm (PTA) to determine the highest-

frequency segments raises questions about its sensitivity and 

specificity, urging further investigation into its 

performance across diverse datasets. 

The proposed methodology’s innovative aspects are 

the extraction of coupling information from peaks and the 

concurrent extraction of depth features from binary images. 

However, the precise impact of these features on the overall 

classification accuracy and their generalizability to different 

populations and demographics remain open research questions. 

The Linear Approximate Functional Walrus Optimization 

Algorithm (LAFWOA) for feature selection introduces a unique 

element. 

The experimental analysis showcasing improved 

accuracy compared to prevailing techniques is promising. 

However, a comprehensive understanding of the proposed 

methodology’s performance across different datasets, patient 

demographics, and pathological conditions is crucial for its 

robustness and reliability. Addressing these research gaps will 

contribute to refining and validating the proposed CaP model, 

fostering advancements in early detection and prediction of 

cardiac diseases. 

 

B. Motivation 

The motivation behind this research stems from the 

profound impact of cardiac disease on mortality, marking it as 

a prevalent category of chronic and life-threatening conditions. 

Recognizing the urgency of early detection, previous research 

has delved into predicting HD through analyzing 

Electrocardiogram (ECG) signals. Despite these 

efforts, there exists an opportunity for improvement in the 

existing methodologies. 

To address this gap, the study introduces an innovative 

CaP approach for early HD detection based on DLCVA-DCNN 

technique within its research framework. The 

journey begins with the preprocessing of input ECG signals, 

employing a Weighted Covariance Kalman Filter (WCKF) to 

eliminate noise and enhance signal quality. The 

subsequent steps involve a bifurcation of the preprocessed data: 

one branch transforms it into a binary image, while the other 

undertakes signal decomposition to identify peak segments. 

The decomposition process utilizes the Bivariate 

Ensemble Empirical Mode Decomposition (BEEMD) method, 

and the Pan-Tompkins Algorithm (PTA) is applied to pinpoint 

the highest-frequency segments. Concurrently, coupling 

information is extracted from these identified peaks, and depth 

features are derived from the binary image. The selection of 

relevant features from both the coupling and depth features is 

achieved by applying the Linear Approximate Functional 

Walrus Optimization Algorithm (LAFWOA). These carefully 

chosen features are then fed into the DLCVA-DCNN classifier 

to discern between disease and standard signals, marking a 

significant advancement in the classification process. The 

experimental analysis thoroughly compares the proposed 

methodology and conventional frameworks, evaluating their 

performance based on established metrics. The outcomes 

demonstrate that the introduced approach outperforms existing 

techniques, attaining higher accuracy in discriminating disease 

and standard signals. 

The significant contributions of this study are stated as 

follows: 

i) The noises of the ECG signals are removed 

utilizing our proposed CaP approach. 

ii) The signal is decomposed noise-free with the 

help of BEEMD. 

iii) The accuracy level is improved by extracting 

coupling information from the signal 

and the depth features from the image. 

iv)  The training time of the model is reduced by 

using LAFWOA. 

 

The remaining sections of this study are organized as follows: 

Section 2 presents the literature review. Section 3 defines the 

system architecture and problem formulation of the proposed 

CaP model. Section 4 describes about the used dataset for the 

formation of the CaP model. Section 5 outlines the proposed 

CaP model. Section 6 presents the experimental analysis of the 

proposed mechanism. Section 7 concludes our study and 

presents a few future works. 

 
 

II. LITERATURE REVIEW 

Jahmunah et al. devised a model to classify ECG 

signals into standard signals. Also, this model analyzed 

Myocardial Infarction (MI), Coronary Artery Disease (CAD), 

and Congestive Heart Failure (CHF) classes by utilizing a 

Convolutional Neural Network (CNN) along with unique 

GaborCNN models [11]. The GaborCNN model [11] demon- 

strated higher accuracy and the fastest computing process in 

experimental evaluation. However, the CNN model used 

general features, neglecting depth features associated 

with the disease, resulting in error output. 

Plawiak & Acharya proposed a three-layer Deep 

Genetic Ensemble of Classifiers (DGEC) for arrhythmia 
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detection using ECG signals [12]. With numerous features, the 

model achieved superior recognition accuracy and was deemed 

suitable for telemedicine models. However, it exclusively 

targeted arrhythmia disease, limiting its applicability to other 

types of heart diseases. 

Fang et al. showcased ECG signal classification based 

on the Radial Basis Neural Network [13]. The K-means 

clustering approach was employed for sample screening, 

followed by using Radial Basis Function (RBF) NN for ECG 

information analysis. However, the final classification yielded 

better results, and the accuracy for recognizing 

abnormal signals was relatively low. 

Li et al. recommended a multi-modal technique for 

predicting cardiovascular disease based on ECG and 

Phonocardiogram (PCG) features [14]. Utilizing prevailing 

NNs, they extracted deep-coded features from ECG and PCG. 

The genetic algorithm was employed for screening the 

amalgamated features, resulting in improved model 

performance compared to single-model mechanisms. However, 

the approach’s networks were optimally adjusted for limited 

datasets. 

Atal & Singh proposed an automated arrhythmia 

classification model using an optimization-centric deep CNN 

[15]. The Bat-Rider Optimization Algorithm (BaROA), 

combining the Rider Optimization Algorithm (ROA) and Multi-

Objective Bat Algorithm (MOBA), achieved enhanced 

outcomes in experimental analysis. However, it focused only on 

manual features, neglecting dynamic features that could affect 

the output.  

Sharma et al. presented a hybrid scheme for ECG 

signal classification involving preprocessing, Discrete Wavelet 

Transformation (DWT) signal decomposition, and feature 

vector optimization with Cuckoo Search (CS) [16]. The Support 

Vector Machine (SVM) with Feed-Forward Back-Propagation 

NN (FFBPNN) was employed for classification, resulting in 

better performance. However, fewer abnormal classes 

were identified, raising concerns about reliability for other 

abnormal classes. 

Goharrizi et al. recommended a multi-lead ECG 

classification scheme using 1-dimensional total variation 

regularization for denoising [17]. The Histogram of Oriented 

Gradients technique extracted feature images for ECG signal 

classification, utilizing SVM with a fully connected NN. 

However, the model achieved better 

performance and was only partially automatic. 

Palczy & Smigiel proposed a Deep Neural Network 

(DNN) for automatic primary ECG signal classification [18]. 

Features were extracted from input signals, and superior 

classification outcomes were attained by the convolutional 

network with entropy features. However, a convolutional 

network without entropy-centered features demon- 

strated higher computational efficiency but lower successful 

outcomes, potentially due to a considerably low number of 

neurons. 

Rath et al. employed an imbalanced number of ECG 

samples to train various classification models for heart disease 

classification [19]. Multiple ML models were utilized, and 

based on performance metrics, the presented approach 

outperformed others. However, the Logistic approach, assumed 

as the baseline, might yield inaccurate results. 

Panganiban et al. introduced a classification technique 

for ECG arrhythmia using CNN with images based on 

spectrograms, eliminating the need for enduring ECG 

visual examination [20]. Google Inception Net retained CNN’s 

final layer, resulting in higher accuracy than other studies. 

However, the direct input of the signal into the classification 

process raised concerns about potential inaccuracies. 

III. SYSTEM ARCHITECTURE & PROBLEM FORMULATION 

A. System Architecture 

Designing a system architecture for Cardiovascular Disease 

(CVD) prediction using the DLCVA-DCNN technique involves 

several key components. Below is a high-level overview of the 

CaP architecture: 

i. Data Analysis: We used the PTB Diagnostic ECG 

Database [21] for developing our CaP model. Then we 

perform data normalization followed by data 

pre-processing to deal with the missing values. 

ii. Feature Engineering: We extract all relevant features 

from the dataset [21] that are likely to contribute to 

CVD prediction. For that, we consider incorporating 

domain-specific knowledge to enhance the feature set. 

iii. Architecture of the CaP model: 

a. Input Layer: Accept the preprocessed 

features as input. 

b. Convolutional Layers: We use 300 

convolutional layers to learn hierarchical 

representations from the input data 

automatically. 

c. Activation Function: We use the Delta Layer-

based Center Vector Activation for 

enhancing non-linearity and feature learning. 

d. Pooling Layers: We employ pooling layers to 

reduce spatial dimensions and 

extract dominant features. 

e. Fully Connected Layers: We connect the 

convolutional layers to densely connected 

layers for global feature learning. 

f. Output Layer: A single output neuron with a 

sigmoid activation function is used for the 

binary classification of CVD. 

g. Delta Layer and Center Vector Activation: 

i. Integrate the Delta Layer to enhance 

the feature learning process by 

capturing local variations in the 

data. 

ii.  Utilize the Center Vector 

Activation to introduce non-

linearity and capture complex 

relationships in the data. 

h. Loss Function: We binary cross-entropy as 

our loss function to deal with the 

binary classification problem. 

i. Optimization Algorithm: We use Adam as 

our optimized to minimize the loss 

function during training. 
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j. Regularization and Dropout: 

i. We apply dropout layers to prevent 

overfitting. 

ii. We use L1 regularization techniques 

to avoid model complexity. 

k. Model Evaluation: 

i. We split the dataset [21] into 

training (80% of data), validation 

(10% of data), and test (10% of data) 

sets. 

ii. Evaluate the CaP model on the 

validation set to fine-tune 

hyperparameters and prevent 

overfitting. 

iii. Assess the final CaP model on the 

test set for unbiased performance 

evaluation. 

l. Hyperparameter Tuning: The best 

hyperparameters configuration is described 

in table 1 to optimize the CaP model 

performance. 

TABLE I.  HYPERPARAMETER CONFIGURATION 

Hyperparameter Value 

Optimizer Stochastic Gradient Descent 

Kernel size 1X1 

Activation Relu 

Dropout Rate  0.1 

Learning Rate  0.0005 

Number of Convolutional Layer  300 

Number of Max Pooling Layer  150 

Number of Convolutional Layer 

Parameters  
150X150X160 

Epoch  2000 

Batch Size  68 

 

m. Deployment: Once the CaP model is trained 

and evaluated, deploy it in a production 

environment by considering various factors 

like latency, scalability, and accessibility. 

B. Problem Formulation 

Existing research efforts have primarily focused on 
enhancing the heart disease (HD) detection model. However, 
several research drawbacks have been identified, which are 
elaborated as follows: 
 

i. Feature Extraction Approach: Many prevailing research 
methods directly extract features from signals, but they 
often fail to DLCVA-DCNN ture the intri- 
cate details in the signal. The frequency domain, known 
for its complexity, poses challenges in extracting 
comprehensive information for disease prediction. 

ii. Utilization of Lightweight Features: The adoption of 
lightweight features in existing research has resulted in 
error-prone outputs, indicating a limitation in 

accurately representing the complexities of the 
underlying signals. 

iii. Impact of Non-Stationary Data Sequences: The 
presence of non-stationary data sequences in samples 
increases the likelihood of overestimating the effect of 
sympathetic control. This, in turn, adversely affects the 
DLCVA-DCNN ability of statistical testing. 

iv. Noisy ECG Signal Handling: The input ECG signal is 
inherently noisy. However, in conventional research, 
the heartbeat is often directly segmented from the input 
image without addressing power line interference and 
electromagnetic interference. This oversight may lead 
to inaccurate results. 

v. Decomposition Process: In traditional research 
methodologies, decomposition is applied to extract 
peak segments from the signal. However, this process 
introduces noise, potentially resulting in a noisy output 
and inaccurate outcomes. 

IV. DATASET 

To develop the CaP model, we use the PTB Diagnostic 

ECG Database [21]. The PTB Diagnostic ECG Database 

comprises 549 high-resolution 15-lead electrocardiograms 

(ECGs). These ECGs consist of the standard 12, and Frank XYZ 

leads. Clinical summaries accompany each record. There are 

one to five available ECG records for each of the 294 subjects 

represented in the database. The subjects encompass healthy 

individuals and patients presenting a range of heart diseases. 
 

V. PROPOSED CAP MODEL 

The proposed DLCVA-DCNN method introduces HD detection 

using a Delta Layer based Center Vector Activation-centric 

Deep Convolutional Neural Network, incorporating depth 

features and coupling information. This approach encompasses 

eight distinct phases: i) pre-processing, ii) signal 

decomposition, iii) peak detection, iv) 

extraction of coupling information, v) image conversion, vi) 

extraction of depth features, vii) feature selection, and viii) 

classification. The block diagram of the proposed model is 

depicted in figure 1. 

 

 
 

Figure 1. Block Diagram of Our Proposed CaP model. 

 

Figure 1 depicts the general flow of our proposed CaP model. 

To achieve the desired result from the CaP model, we used the 

best hyperparameter set up to train the CaP 

model as described in the table 1. 
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i. Pre-processing: 

Initially, the input ECG signals (D1,l = 1, 2, ...., n) 

undergo pre-processing to eliminate various noises, 

including muscle artifact, power line interference, and 

baseline wander, commonly encountered during signal 

recording. The objective is to achieve an error- 

free outcome by removing these noises. In this context, 

the Kalman Filter (KF) is employed for noise 

reduction. Filters that lack output prediction introduce 

phase shifts, and using a predictive filter is essential to 

eliminate this issue. The KF is one of the most 

effective filters, justifying its application in this 

research methodology. However, in instances where 

the covariance process is smaller, round-off errors 

can lead to the computation of a smaller positive 

eigenvalue as a negative number. To address this, the 

research methodology employs the weighted 

covariance, ensuring the prevention of obtaining 

negative values. This modified filter is referred to as 

the Weighted Covariance Kalman Filter (WCKF) 

algorithm. 

 

The process begins with the initialization of the system 

state for the input signal (S1) and the system state error 

covariance (E1). Subsequently, the system state (S2) 

and system state error covariance (E2) are re-

initialized. Following this, the system state and error 

covariance undergo prediction using the following 

equations (1) and (2): 

 

Sn = Z ∗ S2     (1) 

En = ω ∗ (Z ∗ E2 ∗ ZT )    (2) 

 

Subsequently, the Kalman Gain (KG) is computed as 

per the following equation (3). 

 
KG = En ∗ LT (L ∗ En ∗ LT + ω ∗ R)−1  (3) 

 
Following the calculation of KG, the estimation of the 

system state (SS) and the system error covariance 

(SEC) is performed using equations (4) and (5). 

 

SS = Sn + KG ∗ (α − L ∗ Sn)   (4) 

SEC = En − KG ∗ L ∗ En    (5) 

 

Here, SS represents the state variable of the signal, 

SEC symbolizes the state covariance matrix, 

influenced by the weight function ω. α signifies the 

measurement, L epitomizes the state-to-measurement 

matrix, Z specifies the state transition matrix, R is the 

measurement covariance matrix, KG denotes the 

Kalman gain, and Pd characterizes the output of the 

pre-processed data. 

 

ii. Binary Image Conversion: 

On one hand, the signal undergoes noise removal 

before being transformed into a binary image. 

Extracting depth information from the signal poses 

challenges due to its non-linear nature. Employing an 

image-based process proves advantageous for 

extracting pixel information, as the frequency variance 

becomes evident in the pixels. The conversion process 

involves normalization, which unfolds in two steps: 

first, signal data points are partitioned into equivalent 

segments divisible into the total signal points 

without data loss. In the second phase, these 

segmented signals are reshaped into binary images. 

The resulting converted image is denoted as (Ds) in 

equation (6). 

 

Ds = Conversion(Signal after Noise Removal)      (6) 

iii. Depth Feature Extraction: 

After transforming the signal into a binary image, 

depth features are derived from this image. The depth 

features pertain to the most concealed points within the 

image. Specifically, edge features, correlation, 

entropy, contour-based features (external and internal 

contours), and slope-centered features (horizontal, 

positive, vertical, and negative) are extracted from the 

converted image. This set of extracted features is 

defined in equation (7). 

 

Fs={F1,F2,...........,Fn} (7) 

 

Here, Fs denotes the feature set and implies the n number 

of features from the converted image. 

iv. Signal Decomposition: 

On the flip side, the pre-processed signal (Pd) 

undergoes decomposition. This decomposition process 

is an effective way of identifying model information 

within time domain signals. The research employs the 

Ensemble Empirical Mode Decomposition 

(EEMD) algorithm for signal decomposition. The 

rationale behind selecting this algorithm lies in its 

automatic selection of fluctuations within a time 

series. However, this algorithm initially introduces 

Gaussian noise to address the inter-symbol 

interference problem. Since randomly added noise 

might impact the original data, this research 

methodology employs the bivariate function. In this 

function, noise is added to the 

input signal’s imaginary and real parts. The proposed 

algorithm is named Bivariate Ensemble Empirical 

Mode Decomposition (BEEMD). The input signal is 

combined with a white noise time series during the 

initial stage. To prevent the loss of the original signal, 

the signal is segregated into its imaginary and 

real parts as the bivariate process. The bivariate 

process is computed by the following 

equation (8). 

Hr (t) = (Ig(Pd) + Rl(P−d)) + br(t)   (8) 

 

Here, Hr (t) represents the signal affected by noise, Ig 

denotes the imaginary component of the signal, Rl 

illustrates the real part of the signal, and the Gaussian 

white noise is represented as br (t). Subsequently, the 

signal containing noise is decomposed into 

a collection of Intrinsic Mode Functions (IMFs) along 
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with a residual term, expressed as the following 

equation (9). 

Hr (t) = ∑ Mf (t) + Df (t)    (9) 

 

Mf (t) represents the Intrinsic Mode Function (IMF) 

derived from each decomposition, 

and Df (t) signifies the residual. The ultimate IMF is 

achieved by averaging the overall 

IMF (Mavg
f(t)), and it is defined as the following 

equation (10). 

Mavg
f (t) = 1/N ∗ ∑ Mf (t)    (10) 

 

The results obtained from the system depend on both 

the selection of the ensemble number (N) and the 

amplitude of the added noise (T). Additionally, it is 

necessary to satisfy the following equation (11). 

 

γ = T/√N     (11) 

 

Here, the final standard deviation error is represented 

as the disparity between the original signal and 

denoted as γ. 

iv. Peak Detection: 

Following the signal decomposition, peaks are 

detected within the decomposed signal using the Peak-

Tracing Algorithm (PTA) to extract valuable features. 

Broadly, the PTA is employed as a real-time QRS 

detection method. However, this algorithm 

incorporates an integrated window’s width, slope, and 

amplitude. The algorithm encompasses two stages: 

pre-processing and decision-making. In the initial 

stage, a bandpass filter eliminates unwanted signals. 

This removal process involves both a low-pass filter 

and a high-pass filter. The transfer function of 

the low-pass filter is expressed as the following 

equation (12). 

 

Lo(w) = (1 − w−6)2/(1 − w−1)2   (12) 

 

Here, Lo(w) denotes the low pass filter at the w 

transfer function. Afterward, the high pass filter 

HG(w) at the w transfer function is expressed as 

the following equation (13). 

 

HG(w) = w−16 − (1 − w−32)/(1 − w−1)  (13) 

 

Subsequently, to gather insights into the signal’s slope, 

the input signal’s derivative is computed. Following 

differentiation, each point’s value is squared to ensure 

all values are positive. Subsequently, the squared 

signal undergoes averaging. The next step 

involves integrating the averaged signal to extract 

information about the slope. These processes 

collectively contribute to the detection of waves. 

v. Coupling Information Extraction: 

The coupling information is derived from the 

identified waves. Coupling analysis can 

potentially delineate the electrical and mechanical 

characteristics of the heart based on the functional state 

and dynamic changes in the cardiovascular system. 

This information proves valuable for disease detection. 

Mutual Information (MI), multiscale cross 

approximate entropy, Cross Power Spectral Density 

(CPSD), phase synchronization, cross fuzzy measure 

entropy, and joint symbolic dynamics information are 

extracted in this context. The extracted coupling 

information is then articulated as the following 

equation (14). 

Ci = C1, C2, ........., Cn    (14) 

Here, the extracted coupling information set is 

symbolized as Ci ∈ R+. 

vi. Feature Selection: 

In this context, significant features are selected from 

the extracted depth features in the binary image and the 

extracted coupling information from the signal to 

minimize error output and training time. The proposed 

methodology employs the LAFWOA 

for the feature selection process.  

 

In the Walrus algorithm, adults identify their large 

whiskers and tusks. A parameter is utilized to 

determine the algorithm’s exploration ability, inducing 

substantial and extensive changes in the walrus’s 

position. Incorrect selection of this parameter 

can lead to premature convergence issues. Hence, the 

research methodology utilizes the linear 

approximation function to choose the parameter value. 

The population is initially initialized, where the 

extracted depth features and coupling information are 

treated as attributes of the walrus. The initialization of 

the population is expressed in equation (15). 

 

Jq = J1, J2, .........., Jn    (15) 

 

Here, Jq exemplifies the combination of extracted 

feature set and coupling information where, Jq ∈ R+. 

 

In this study, HD classification serves as the fitness 

criterion. Following the initialization phase, the fitness 

is computed. The population update process is initiated 

if the fitness value does not align with the 

predetermined threshold. This update process 

involves three phases: i) feeding strategy, ii) 

migration, and iii) escaping and fighting against 

predators. 

vii. Classification: 

In the context of HD prediction, the DLCVA-DCNN 

classifier receives the selected features and the original 

input signal as input. The random assignment of 

weight values in a CNN can result in error output. 

Thus, the utilization of the delta layer is 

introduced. This layer indicates that the adjustment in 

a node’s weight is proportional to the product of the 

error and the input, where the error represents the 

disparity between the desired and actual output. 

Additionally, CNN employs the softmax acti- 

vation function, known for its instability and vanishing 

gradient problem. Therefore, this research 
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incorporates the neuron’s center vector with the input 

of the activation function. Convolution layers extract 

features from the input image, and the dense 

layer uses the output from these layers to produce the 

final output. Subsequently, the convolutional layer’s 

output is fed into the pooling layer, which reduces the 

number of parameters in the input and introduces some 

information loss. The output is fully 

connected through nodes in the fully connected layer, 

followed by activation in the output layer. Figure 2 

illustrates the structure of our proposed DLCVA-

DCNN classifier, while algorithm 1 defines the CaP 

model. 

 

 
 

Figure 2. Structure of the DLCVA-DCNN classifier 

 

Algorithm1. Cardiovascular Disease Prediction using CaP 

Model 

Input: Input features for cardiovascular disease prediction 

Output: Predicted cardiovascular disease status 

Begin 

i. Initialization: 

a. Initialize the deep convolutional neural 

network with a delta layer based center vector 

activation. 

ii. Set hyperparameters, such as learning rate, batch 

size, and the number of epochs. 

iii. Input Processing: 

a. Preprocess input data, including 

normalization and feature extraction. 

iv. Model Architecture: 

a. Assume a simplified CNN architecture with 

multiple layers. For example, a 

convolutional layer followed by a pooling 

layer and a fully connected layer: 

 

Convolutional Layer: h(1) = σ(W (1) ∗ X + 

b(1)) 

  Pooling Layer: h(2) = max pooling(h(1)) 

 Fully Connected Layer: h(3) = σ(W (2)h(2) +   

        b(2)) 

Here, h(i) represents the output of layer i, W (i) is 

the weight matrix, b(i) is the bias, ∗ denotes 

convolution, and σ is the activation function. 

v. Model Training: 

a. Train the deep convolutional neural network 

using a suitable loss function, such 

as cross-entropy: 

 
 

Here θ represents the model parameters, N is 

the number of samples, yi is the 

true label, and ˆyi is the predicted probability. 

vi. Prediction: 

a. New input data into the trained model to 

predict cardiovascular disease status. 

b. The final prediction can be obtained by 

applying a threshold to the predicted 

probability: 

 
vii. Return the predicted cardiovascular disease status. 

End 

 

 

VI. EVALUATION RESULTS & DISCUSSION 

A. Evaluation Results  

The CaP model’s effectiveness is assessed based on its 

performance in filtering, classification, decomposition, and 

feature selection processes, aligning with established 

research methodologies. 

Network loss of the proposed CaP model is evaluated 

through the binary cross-entropy (BCE) metric. 

BCE is computed by the following equation (18). 

 
 

Here, N denotes the total number of samples. yi represents the 

true label of the ith sample (either 0 or 1). pi is the predicted 

probability that the ith sample belongs to 

class 1. 

B. Performance Analysis based on Filtering Process 

To analyze the performance of our proposed CaP model based 

on filtering process, we designed WCKF filter. Therefore, the 

performance of the CaP model using our proposed WCKF filter 

is analyzed through the Peak Signal Noise Ratio (PSNR) and 

Mean Squared Error (MSE) metrics. PSNR and MSE can be 

computed by the following equations (19) and (20). 

 
 
Here, MAX is the maximum possible pixel value. MSE is the 

Mean Squared Error between the original and the reconstructed 

signal. 
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Here, n is the number of samples. Yi and ̂ Yi are the actual value 

and the predicted value for the ith sample, respectively. 

 

The outcomes of the CaP model based on WCKF filter are 

compared with Kalman Filter (KF) [23], Band Pass Filter (BPF) 

[24], Chebyshev Filter (CF) [25], and Notch Filter (NF) [26] 

techniques. Table 2 describes the comparison results among all 

techniques. 

 

TABLE II.  COMPARISON OF TECHNIQUES WITH PERFORMANCE METRICS 

BASED ON FILTERING PROCESS  

Techniques  PSNR (%) MSE (%) 

Kalman Filter (KF) [23]  68 60.3 

Band Pass Filter (BPF) [24] 64 49.2 

Chebyshev Filter (CF) [25] 59 31.3 

Notch Filter (NF) [26] 65 24.23 

CaP with WCKF 

(Proposed Technique) 
73 

10 

 

From table 2, we observed that the CaP model with WCKF 

achieves superior PSNR and a lower MSE value, which 

mitigates favorable outcomes of our proposed CaP model. Our 

CaP model exhibits a PSNR of 73% and an MSE of 10%. 

Higher PSNR and lower MSE values indicate higher prediction 

accuracy. In contrast, the KF demonstrates an average PSNR 

and MSE of 68% and 60.3%, respectively. Similarly, 

the other algorithms perform less than the proposed CaP model. 

From the above observation, we can understand that the noise 

removal process employed by the CaP model proves highly 

effective for eliminating baseline wander, muscle artifacts, and 

other forms of noise. 

C. Performance Analysis of CaP Model based on Signal 

Decomposition 

Performance Analysis of CaP Model based on Signal 

Decomposition is computed through the recall, sensitivity, 

precision, and F1-Score metrics. The recall, sensitivity, 

precision, and F1-Score metrics can be computed by using the 

following equations (21), (22), (23), and (24). 

 

Recall = True Positives/(True Positives + False Negatives) (21) 

Sensitivity = False Positives/(True Positives + False Negatives)

                         (22) 

Precision = True Positives/(True Positives + False Positives) 

           (23) 

F1-Score = 2 ∗( (Precision ∗ Recall)/(Precision + Recall)) 
          (24) 
The performance of the CaP model using BEEMD method is 

compared with the conventional Empirical Mode 

Decomposition (EMD) [27], Fourier Decomposition Method 

(FDM) [28], Ensemble Empirical Mode Decomposition 

(EEMD) [29], and Variational Mode Decomposition (VMD) 

[7] methods. The comparison result is described in table 3. 

TABLE III.  COMPARISON OF METHODS WITH PERFORMANCE METRICS 

BASED ON SIGNAL DECOMPOSITION  

Methods  
Precision 

(%)  

Recall 

(%)  

F1-Score 

(%) 

Empirical Mode Decomposition 

(EMD) [27] 

93.2  91   88 

Fourier Decomposition Method 

(FDM) [28] 

89  85.2  80.29 

Ensemble Empirical Mode 

Decomposition (EEMD) [29] 

79  71.3  69.98 

Variational Mode Decomposition 

(VMD) [7] 

69  64.23  60.98 

CaP with BEEMD (Proposed 

Method) 

96 94 95 

 

Table 3 shows that the proposed CaP with the BEEMD method 

demonstrates precision, recall, and F1-Score values of 96%, 

94%, and 95%, respectively. In contrast, the compared methods 

exhibit lower precision values: 93.2% for EMD, 89% for FMD, 

79% for EEMD, and 69% for the VMD methods. Additionally, 

the existing research exhibits inferior performance across 

various metrics compared to the proposed CaP model because 

the utilization of the bivariate function in the CaP model 

safeguards against noise and mode mixing problems. 

D. Performance Analysis of CaP Model based on 

Feature Selection 

Performance analysis of CaP model based on feature selection 

is computed by using LAFWOA algorithm. Here, the 

performance of CaP model with LAFWOA algorithm 

is compared with the existing Walrus Optimization Algorithm 

(WOA) [6], Salp Swarm Optimization (SSO) [5], Dove Swarm 

Optimization (DSO) [9], and Egret Swarm optimization (ESO) 

[8] algorithms. 

 
Figure 3. Fitness Vs Iteration Analysis Comparison. 

 

Figure 3 illustrates a graphical representation of the analysis of 

fitness versus iteration. In this study, accuracy serves as the 

fitness function. The fitness level exhibits 

variations based on the iteration count. At an iteration count of 

80, the proposed CaP with the LAFWOA algorithm achieves a 

fitness of 96%, surpassing the fitness values obtained by 

existing research approaches at the exact iteration count. 

Moreover, the presented CaP with the LAFWOA algorithm 

consistently demonstrates superior outcomes for the remaining 

iteration counts. Solving the premature convergence problem 

in CaP with the LAFWOA algorithm contributes to its enhanced 

performance in each iteration. 
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E. Performance Analysis of CaP Model based on HD 

Classification 

This phase compares the performance of our proposed CaP 

model (based on DLCVA-DCNN classifier) with the 

conventional Recurrent Neural Network (RNN) [22], 

Artificial Neural Network (ANN) [5], Deep Convolutional 

Neural Network (DCNN) [15], and Deep Neural Network 

(DNN) [18] models using specificity, sensitivity, and accuracy 

metrics as described in table 4. 

TABLE IV.  COMPARISON OF METHODS WITH PERFORMANCE METRICS 

BASED ON HD CLASSIFICATION  

Models  Specificity 

(%)  

Sensitivity 

(%)  

Accuracy 

(%) 

Deep Convolutional Neural 

Network (DCNN) [15]  

83.2  81  80.8 

Deep Neural Network (DNN) 

[18]  

69  68.23 68.98 

Artificial Neural Network 

(ANN) [5]  

 80   79.3  79.98 

Recurrent Neural Network 

(RNN) [22]  

75  74.23  73.98 

CaP (Proposed Model) 97 98  98.5 

 

From table 4, we observed the HD classification of the state-of-

the-art models using specificity, sensitivity, and accuracy 

metrics. The existing DNN model [18] attains the 

lowest value based on all the mentioned metrics (i.e., 69% for 

specificity, 68.23% for sensitivity, and 68.98% for accuracy). 

In contrast to existing approaches, the DCNN [15] model attains 

better results. However, it also has lower performance than the 

proposed CaP model because the proposed methodology is 

enhanced by introducing a delta layer with the center vector 

neuron activation process. The specificity, 

sensitivity and accuracy values of the proposed approach are 

97%, 98%, and 98.5%, respectively. 

 
Figure 4. Analysis of Proposed DLCVA-DCNN and Existing Classifiers 

based on Precision, Recall, and F1-Score Metrics. 
 

Figure 4 presents an analysis based on i) Precision, ii) Recall, 

and iii) F1-Score metrics comparing the proposed CaP model 

with DLCVA-DCNN classifier with the existing classifiers. In 

this comparison, the presented CaP model consistently outper- 

forms conventional systems. The F1-Score value achieved by 

the proposed CaP model is 98%, surpassing the F1-Score values 

of existing DCNN [15], RNN [22], DNN [18], and 

ANN [5] are 2.8%, 6.1%, 9.5%, and 11.1%, respectively. This 

observation highlights the efficiency prominently demonstrated 

by the proposed DLCVA-DCNN classifier 

VII. CONCLUSION & FUTURE WORK 

This study introduces an efficient system for detecting Heart 

Diseases (HD) based on DLCVA-DCNN. Both coupling 

information and depth features are extracted to enhance the 

system’s effectiveness. The proposed methodology is evaluated 

using the PTB-ECG diagnostic database. Performance 

comparison with conventional mechanisms is conducted in the 

experimental evaluation. Using PSNR and MSE metrics, the 

proposed WCKF is compared with other filters, achieving 73% 

PSNR and 10% MSE. The decomposition algorithm is analyzed 

with respect to recall, precision, F1-Score, and sensitivity 

metrics. The primary phase involves HD classification using a 

classifier. The proposed DLCVA-DCNN is contrasted with 

other algorithms based on performance metrics, achieving a 

higher accuracy (98.5%) than existing classifiers. The proposed 

classifier is also compared with literature approaches. However, 

peak detection is crucial for extracting information from the 

input, particularly in effectively detecting QRS and other 

significant peaks. Therefore, the proposed CaP model could be 

further enhanced by adopting an efficient approach for peak 

detection and considering additional features for HD prediction 

in future research. 
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