6,940 research outputs found

    Evolving Ensemble Fuzzy Classifier

    Full text link
    The concept of ensemble learning offers a promising avenue in learning from data streams under complex environments because it addresses the bias and variance dilemma better than its single model counterpart and features a reconfigurable structure, which is well suited to the given context. While various extensions of ensemble learning for mining non-stationary data streams can be found in the literature, most of them are crafted under a static base classifier and revisits preceding samples in the sliding window for a retraining step. This feature causes computationally prohibitive complexity and is not flexible enough to cope with rapidly changing environments. Their complexities are often demanding because it involves a large collection of offline classifiers due to the absence of structural complexities reduction mechanisms and lack of an online feature selection mechanism. A novel evolving ensemble classifier, namely Parsimonious Ensemble pENsemble, is proposed in this paper. pENsemble differs from existing architectures in the fact that it is built upon an evolving classifier from data streams, termed Parsimonious Classifier pClass. pENsemble is equipped by an ensemble pruning mechanism, which estimates a localized generalization error of a base classifier. A dynamic online feature selection scenario is integrated into the pENsemble. This method allows for dynamic selection and deselection of input features on the fly. pENsemble adopts a dynamic ensemble structure to output a final classification decision where it features a novel drift detection scenario to grow the ensemble structure. The efficacy of the pENsemble has been numerically demonstrated through rigorous numerical studies with dynamic and evolving data streams where it delivers the most encouraging performance in attaining a tradeoff between accuracy and complexity.Comment: this paper has been published by IEEE Transactions on Fuzzy System

    Boosting Classifiers for Drifting Concepts

    Get PDF
    This paper proposes a boosting-like method to train a classifier ensemble from data streams. It naturally adapts to concept drift and allows to quantify the drift in terms of its base learners. The algorithm is empirically shown to outperform learning algorithms that ignore concept drift. It performs no worse than advanced adaptive time window and example selection strategies that store all the data and are thus not suited for mining massive streams. --

    Classifier ensemble for uncertain data stream classification

    Get PDF
    Currently available algorithms for data stream classification are all designed to handle precise data, while data with uncertainty or imperfection is quite natural and widely seen in real-life applications. Uncertainty can arise in attribute values as well as in class values. In this paper, we focus on the classification of streaming data that has different degrees of uncertainty within class values. We propose two types of ensemble based algorithms, Static Classifier Ensemble (SCE) and Dynamic Classifier Ensemble (DCE) for mining uncertain data streams. Experiments on both synthetic and real-life data set are made to compare and contrast our proposed algorithms. The experimental results reveal that DCE algorithm outperforms SCE algorithm

    A Hierarchical Temporal Memory Sequence Classifier for Streaming Data

    Get PDF
    Real-world data streams often contain concept drift and noise. Additionally, it is often the case that due to their very nature, these real-world data streams also include temporal dependencies between data. Classifying data streams with one or more of these characteristics is exceptionally challenging. Classification of data within data streams is currently the primary focus of research efforts in many fields (i.e., intrusion detection, data mining, machine learning). Hierarchical Temporal Memory (HTM) is a type of sequence memory that exhibits some of the predictive and anomaly detection properties of the neocortex. HTM algorithms conduct training through exposure to a stream of sensory data and are thus suited for continuous online learning. This research developed an HTM sequence classifier aimed at classifying streaming data, which contained concept drift, noise, and temporal dependencies. The HTM sequence classifier was fed both artificial and real-world data streams and evaluated using the prequential evaluation method. Cost measures for accuracy, CPU-time, and RAM usage were calculated for each data stream and compared against a variety of modern classifiers (e.g., Accuracy Weighted Ensemble, Adaptive Random Forest, Dynamic Weighted Majority, Leverage Bagging, Online Boosting ensemble, and Very Fast Decision Tree). The HTM sequence classifier performed well when the data streams contained concept drift, noise, and temporal dependencies, but was not the most suitable classifier of those compared against when provided data streams did not include temporal dependencies. Finally, this research explored the suitability of the HTM sequence classifier for detecting stalling code within evasive malware. The results were promising as they showed the HTM sequence classifier capable of predicting coding sequences of an executable file by learning the sequence patterns of the x86 EFLAGs register. The HTM classifier plotted these predictions in a cardiogram-like graph for quick analysis by reverse engineers of malware. This research highlights the potential of HTM technology for application in online classification problems and the detection of evasive malware

    The online performance estimation framework: heterogeneous ensemble learning for data streams

    Get PDF
    Ensembles of classifiers are among the best performing classifiers available in many data mining applications, including the mining of data streams. Rather than training one classifier, multiple classifiers are trained, and their predictions are combined according to a given voting schedule. An important prerequisite for ensembles to be successful is that the individual models are diverse. One way to vastly increase the diversity among the models is to build an heterogeneous ensemble, comprised of fundamentally different model types. However, most ensembles developed specifically for the dynamic data stream setting rely on only one type of base-level classifier, most often Hoeffding Trees. We study the use of heterogeneous ensembles for data streams. We introduce the Online Performance Estimation framework, which dynamically weights the votes of individual classifiers in an ensemble. Using an internal evaluation on recent training data, it measures how well ensemble members performed on this and dynamically updates their weights. Experiments over a wide range of data streams show performance that is competitive with state of the art ensemble techniques, including Online Bagging and Leveraging Bagging, while being significantly faster. All experimental results from this work are easily reproducible and publicly available online

    Algorithm selection on data streams

    Get PDF
    We explore the possibilities of meta-learning on data streams, in particular algorithm selection. In a first experiment we calculate the characteristics of a small sample of a data stream, and try to predict which classifier performs best on the entire stream. This yields promising results and interesting patterns. In a second experiment, we build a meta-classifier that predicts, based on measurable data characteristics in a window of the data stream, the best classifier for the next window. The results show that this meta-algorithm is very competitive with state of the art ensembles, such as OzaBag, OzaBoost and Leveraged Bagging. The results of all experiments are made publicly available in an online experiment database, for the purpose of verifiability, reproducibility and generalizability
    corecore