1,511 research outputs found

    Strengthening e-banking security using keystroke dynamics

    Get PDF
    This paper investigates keystroke dynamics and its possible use as a tool to prevent or detect fraud in the banking industry. Given that banks are constantly on the lookout for improved methods to address the menace of fraud, the paper sets out to review keystroke dynamics, its advantages, disadvantages and potential for improving the security of e-banking systems. This paper evaluates keystroke dynamics suitability of use for enhancing security in the banking sector. Results from the literature review found that keystroke dynamics can offer impressive accuracy rates for user identification. Low costs of deployment and minimal change to users modus operandi make this technology an attractive investment for banks. The paper goes on to argue that although this behavioural biometric may not be suitable as a primary method of authentication, it can be used as a secondary or tertiary method to complement existing authentication systems

    Critical success factors for preventing E-banking fraud

    Get PDF
    E-Banking fraud is an issue being experienced globally and is continuing to prove costly to both banks and customers. Frauds in e-banking services occur as a result of various compromises in security ranging from weak authentication systems to insufficient internal controls. Lack of research in this area is problematic for practitioners so there is need to conduct research to help improve security and prevent stakeholders from losing confidence in the system. The purpose of this paper is to understand factors that could be critical in strengthening fraud prevention systems in electronic banking. The paper reviews relevant literatures to help identify potential critical success factors of frauds prevention in e-banking. Our findings show that beyond technology, there are other factors that need to be considered such as internal controls, customer education and staff education etc. These findings will help assist banks and regulators with information on specific areas that should be addressed to build on their existing fraud prevention systems

    Multibiometric security in wireless communication systems

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 05/08/2010.This thesis has aimed to explore an application of Multibiometrics to secured wireless communications. The medium of study for this purpose included Wi-Fi, 3G, and WiMAX, over which simulations and experimental studies were carried out to assess the performance. In specific, restriction of access to authorized users only is provided by a technique referred to hereafter as multibiometric cryptosystem. In brief, the system is built upon a complete challenge/response methodology in order to obtain a high level of security on the basis of user identification by fingerprint and further confirmation by verification of the user through text-dependent speaker recognition. First is the enrolment phase by which the database of watermarked fingerprints with memorable texts along with the voice features, based on the same texts, is created by sending them to the server through wireless channel. Later is the verification stage at which claimed users, ones who claim are genuine, are verified against the database, and it consists of five steps. Initially faced by the identification level, one is asked to first present one’s fingerprint and a memorable word, former is watermarked into latter, in order for system to authenticate the fingerprint and verify the validity of it by retrieving the challenge for accepted user. The following three steps then involve speaker recognition including the user responding to the challenge by text-dependent voice, server authenticating the response, and finally server accepting/rejecting the user. In order to implement fingerprint watermarking, i.e. incorporating the memorable word as a watermark message into the fingerprint image, an algorithm of five steps has been developed. The first three novel steps having to do with the fingerprint image enhancement (CLAHE with 'Clip Limit', standard deviation analysis and sliding neighborhood) have been followed with further two steps for embedding, and extracting the watermark into the enhanced fingerprint image utilising Discrete Wavelet Transform (DWT). In the speaker recognition stage, the limitations of this technique in wireless communication have been addressed by sending voice feature (cepstral coefficients) instead of raw sample. This scheme is to reap the advantages of reducing the transmission time and dependency of the data on communication channel, together with no loss of packet. Finally, the obtained results have verified the claims

    Non-Intrusive Subscriber Authentication for Next Generation Mobile Communication Systems

    Get PDF
    Merged with duplicate record 10026.1/753 on 14.03.2017 by CS (TIS)The last decade has witnessed massive growth in both the technological development, and the consumer adoption of mobile devices such as mobile handsets and PDAs. The recent introduction of wideband mobile networks has enabled the deployment of new services with access to traditionally well protected personal data, such as banking details or medical records. Secure user access to this data has however remained a function of the mobile device's authentication system, which is only protected from masquerade abuse by the traditional PIN, originally designed to protect against telephony abuse. This thesis presents novel research in relation to advanced subscriber authentication for mobile devices. The research began by assessing the threat of masquerade attacks on such devices by way of a survey of end users. This revealed that the current methods of mobile authentication remain extensively unused, leaving terminals highly vulnerable to masquerade attack. Further investigation revealed that, in the context of the more advanced wideband enabled services, users are receptive to many advanced authentication techniques and principles, including the discipline of biometrics which naturally lends itself to the area of advanced subscriber based authentication. To address the requirement for a more personal authentication capable of being applied in a continuous context, a novel non-intrusive biometric authentication technique was conceived, drawn from the discrete disciplines of biometrics and Auditory Evoked Responses. The technique forms a hybrid multi-modal biometric where variations in the behavioural stimulus of the human voice (due to the propagation effects of acoustic waves within the human head), are used to verify the identity o f a user. The resulting approach is known as the Head Authentication Technique (HAT). Evaluation of the HAT authentication process is realised in two stages. Firstly, the generic authentication procedures of registration and verification are automated within a prototype implementation. Secondly, a HAT demonstrator is used to evaluate the authentication process through a series of experimental trials involving a representative user community. The results from the trials confirm that multiple HAT samples from the same user exhibit a high degree of correlation, yet samples between users exhibit a high degree of discrepancy. Statistical analysis of the prototypes performance realised early system error rates of; FNMR = 6% and FMR = 0.025%. The results clearly demonstrate the authentication capabilities of this novel biometric approach and the contribution this new work can make to the protection of subscriber data in next generation mobile networks.Orange Personal Communication Services Lt

    Cloud data security and various cryptographic algorithms

    Get PDF
    Cloud computing has spread widely among different organizations due to its advantages, such as cost reduction, resource pooling, broad network access, and ease of administration. It increases the abilities of physical resources by optimizing shared use. Clients’ valuable items (data and applications) are moved outside of regulatory supervision in a shared environment where many clients are grouped together. However, this process poses security concerns, such as sensitive information theft and personally identifiable data leakage. Many researchers have contributed to reducing the problem of data security in cloud computing by developing a variety of technologies to secure cloud data, including encryption. In this study, a set of encryption algorithms (advance encryption standard (AES), data encryption standard (DES), Blowfish, Rivest-Shamir-Adleman (RSA) encryption, and international data encryption algorithm (IDEA) was compared in terms of security, data encipherment capacity, memory usage, and encipherment time to determine the optimal algorithm for securing cloud information from hackers. Results show that RSA and IDEA are less secure than AES, Blowfish, and DES). The AES algorithm encrypts a huge amount of data, takes the least encipherment time, and is faster than other algorithms, and the Blowfish algorithm requires the least amount of memory space

    Integration of biometrics and steganography: A comprehensive review

    Get PDF
    The use of an individual’s biometric characteristics to advance authentication and verification technology beyond the current dependence on passwords has been the subject of extensive research for some time. Since such physical characteristics cannot be hidden from the public eye, the security of digitised biometric data becomes paramount to avoid the risk of substitution or replay attacks. Biometric systems have readily embraced cryptography to encrypt the data extracted from the scanning of anatomical features. Significant amounts of research have also gone into the integration of biometrics with steganography to add a layer to the defence-in-depth security model, and this has the potential to augment both access control parameters and the secure transmission of sensitive biometric data. However, despite these efforts, the amalgamation of biometric and steganographic methods has failed to transition from the research lab into real-world applications. In light of this review of both academic and industry literature, we suggest that future research should focus on identifying an acceptable level steganographic embedding for biometric applications, securing exchange of steganography keys, identifying and address legal implications, and developing industry standards

    Privacy in Biometric Systems

    Get PDF
    Biometrics are physiological and/or behavioral characteristics of a person that have been used to provide an automatic proof of identity in a growing list of applications including crime/terrorism fighting, forensics, access and border control, securing e-/m-commerce transactions and service entitlements. In recent years, a great deal of research into a variety of new and traditional biometrics has widened the scope of investigations beyond improving accuracy into mechanisms that deal with serious concerns raised about the potential misuse of collected biometric data. Despite the long list of biometrics’ benefits, privacy concerns have become widely shared due to the fact that every time the biometric of a person is checked, a trace is left that could reveal personal and confidential information. In fact, biometric-based recognition has an inherent privacy problem as it relies on capturing, analyzing, and storing personal data about us as individuals. For example, biometric systems deal with data related to the way we look (face, iris), the way we walk (gait), the way we talk (speaker recognition), the way we write (handwriting), the way we type on a keyboard (keystroke), the way we read (eye movement), and many more. Privacy has become a serious concern for the public as biometric systems are increasingly deployed in many applications ranging from accessing our account on a Smartphone or computer to border control and national biometric cards on a very large scale. For example, the Unique Identification Authority of India (UIDAI) has issued 56 million biometric cards as of January 2014 [1], where each biometric card holds templates of the 10 fingers, the two irises and the face. An essential factor behind the growing popularity of biometrics in recent years is the fact that biometric sensors have become a lot cheaper as well as easier to install and handle. CCTV cameras are installed nearly everywhere and almost all Smartphones are equipped with a camera, microphone, fingerprint scanner, and probably very soon, an iris scanner
    • 

    corecore