3 research outputs found

    ISI-aware channel code design for molecular communication via diffusion

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In molecular communication via diffusion, information molecules diffusing in the environment are subject to Brownian motion. Due to probabilistic propagation, the arrival of the molecules at the receiver is spread in time, leading to the reception of some molecules belonging to the previous symbol(s) during the upcoming symbol duration. Known as inter-symbol interference (ISI), this problem has been extensively studied in the literature by applying a large spectrum of techniques, mostly inspired by approaches in the wireless communication domain, including channel coding techniques. Unfortunately, many known channel codes do not perform well in the molecular communications domain since the diffusion channel features a significant memory component. In this paper, novel methods for channel coding by incorporating the effect of ISI in the design of the channel codes for the molecular diffusion channel are proposed. The results show that the proposed methods provide significant improvements in performance in terms of the codeword error rate.Postprint (author's final draft
    corecore