6 research outputs found

    Enhancing the Expressivity of the Sensel Morph via Audio-rate Sensing

    Get PDF
    This project describes a novel approach to hybrid electro-acoustical instruments by augmenting the Sensel Morph, with real-time audio sensing capabilities. The actual action-sounds are captured with a piezoelectric transducer and processed in Max 8 to extend the sonic range existing in the acoustical domain alone. The control parameters are captured by the Morph and mapped to audio algorithm proprieties like filter cutoff frequency, frequency shift or overdrive. The instrument opens up the possibility for a large selection of different interaction techniques that have a direct impact on the output sound. The instrument is evaluated from a sound designer’s perspective, encouraging exploration in the materials used as well as techniques. The contribution are two-fold. First, the use of a piezo transducer to augment the Sensel Morph affords an extra dimension of control on top of the offerings. Second, the use of acoustic sounds from physical interactions as a source for excitation and manipulation of an audio processing system offers a large variety of new sounds to be discovered. The methodology involved an exploratory process of iterative instrument making, interspersed with observations gathered via improvisatory trials, focusing on the new interactions made possible through the fusion of audio-rate inputs with the Morph’s default interaction methods

    An Expressive Multidimensional Physical Modelling Percussion Instrument

    Get PDF
    This paper describes the design, implementation and evaluation of a digital percussion instrument with multidimensional polyphonic control of a real-time physical modelling system. The system utilises modular parametric control of different physical models, excitations and couplings alongside continuous morphing and unique interaction capabilities to explore and enhance expressivity and gestural interaction for a percussion instrument. Details of the instrument and audio engine are provided together with an experiment that tested real-time capabilities of the system, and expressive qualities of the instrument. Testing showed that advances in sensor technology have the potential to enhance creativity in percussive instruments and extend gestural manipulation, but will require well designed and inherently complex mapping schemes

    Subtlety and detail in digital musical instrument design

    Get PDF
    PhD thesisSubtlety and detail are fundamental to what makes musical instruments special, and worth dedicating a life’s practice to, for designer, maker, player and listener alike. While instruments are recognised and classified by form, it is the nuances of individual instruments that constitute their power to say what could not be said any other way. Digital musical instruments (DMI) have long been criticised as lacking expressive depth, but technology of sufficient fidelity now exists, which raises compelling questions. What can contemporary DMI designers learn from heritage practices about mastering subtlety and detail? What forms does this mastery take, and how can it be elucidated, compared and shared? Using DMI design tools, kits and activities as probes, this thesis addresses these questions from the perspectives of design, embodiment and craft. In a preliminary study, violin luthiers were asked about subtlety and detail in their practice and culture. The outcomes suggested that subtle details originate in the tacit and embodied realms, which are facilitated to develop by specific contexts, environments and materials. In the first study, attendees of a DMI research conference participated in a workshop reflecting on subtlety and detail. Attendees were divided into groups and explored the physical details of a DMI design kit, in an activity book ended by discussion. Responses focused on re-interpretations of instrumental identity, suggesting that the provided context motivated in the opposite direction to the original brief. In the second study, the same kit was deployed with single rather than co-located groups of digital luthiers, modifying instead the sound of the instrument via a Pure Data patch, and responses focused less on instrumental identity and more on gesture-sound mapping strategies. Provocatively, neither studies resulted in sustained focus on details, motivating a novel DMI probe and activity for individuals. In the third study, digital and traditional instrument makers, musicians and other creatives, were invited to handcraft the resonance models of a digital tuned percussion instrument using sculpting clay, responding to constrained briefs. Participants’ backgrounds deeply influenced their responses, and distinctive themes emerged related to aesthetics, tacit and embodied knowledge, and algorithmic pattern. This thesis introduces a scale-based ontology of DMI design, dividing detail into macro, meso and micro levels. Focusing on the micro scale, a series of reflections and suggestions are provided based on the investigations, for how DMI design practitioners, technologists and researchers can illuminate this domain, for the benefit of subtle and detailed digital musical expression

    Proceedings of the 19th Sound and Music Computing Conference

    Get PDF
    Proceedings of the 19th Sound and Music Computing Conference - June 5-12, 2022 - Saint-Étienne (France). https://smc22.grame.f
    corecore