8 research outputs found

    Electronic voting: Methods and protocols

    Get PDF
    The act of casting a ballot during an election cycle has been plagued by a number of problems, both intrinsic and extraneous. The old-fashioned paper ballot solves a number of problems, but creates its own. The clear 21st Century solution is the use of an automated electronic system for collection and tallying of votes, but the attitude of the general populace towards these systems has been overwhelmingly negative, supported in some cases by fraud and abuse. The purpose of this thesis is to do a broad survey of systems available on the market now (both in industry and academia) and then compare and contrast these systems to an “ideal” system, which we attempt to define. To do this we survey academic and commercial literature from many sources and selected the most popular, current, or interesting of the designs—then compare the relative strengths and weaknesses of these designs. What we discovered is that devices presented by industry are not only closed-box (which makes them inherently untrustworthy), but also largely inept in security and/or redundancy. Conversely, systems presented by academia are relatively strong in security and redundancy, but lack in ease-of-use or miss helpful features found on industry devices. To combat these perceived weaknesses, we present a prototype of one system which has not previously been implemented, described in Wang [1]. This system brings together many ideas from academia to solve a significant number of the issues plaguing electronic voting machines. We present this solution in its entirety as open-source software for review by the cryptographic and computer science community. In addition to an electronic voting implementation this solution includes a graphical user interface, a re-encryption mix network, and several decryption methods including threshold decryption. All of these items are described in-depth by this thesis. However, as we discuss in the conclusion, this solution falls short in some areas as well. We earmark these problem areas for future research and discuss alternate paths forward

    Voting: What Has Changed, What Hasn't, & Why: Research Bibliography

    Get PDF
    Since the origins of the Caltech/MIT Voting Technology Project in the fall of 2000, there has been an explosion of research and analysis on election administration and voting technology. As we worked throughout 2012 on our most recent study, Voting: What Has Changed, What Hasn’t, & What Needs Improvement, we found many more research studies. In this research bibliography, we present the research literature that we have found; future revisions of this research bibliography will update this list.Carnegie Corporation of New Yor

    Veröffentlichungen und Vorträge 2009 der Mitglieder der Fakultät für Informatik

    Get PDF

    Matters of Coercion-Resistance in Cryptographic Voting Schemes

    Get PDF
    This work addresses coercion-resistance in cryptographic voting schemes. It focuses on three particularly challenging cases: write-in candidates, internet elections and delegated voting. Furthermore, this work presents a taxonomy for analyzing and comparing a huge variety of voting schemes, and presents practical experiences with the voting scheme Bingo Voting

    Jahresbericht 2009 der Fakultät für Informatik

    Get PDF

    Deductive Verification of Concurrent Programs and its Application to Secure Information Flow for Java

    Get PDF
    Formal verification of concurrent programs still poses a major challenge in computer science. Our approach is an adaptation of the modular rely/guarantee methodology in dynamic logic. Besides functional properties, we investigate language-based security. Our verification approach extends naturally to multi-threaded Java and we present an implementation in the KeY verification system. We propose natural extensions to JML regarding both confidentiality properties and multi-threaded programs
    corecore