30,280 research outputs found

    Performance evaluation on optimisation of 200 dimensional numerical tests - results and issues

    Get PDF
    Abstract: Many tasks in science and technology require optimisation. Resolving such tasks could bring great benefits to community. Multidimensional problems where optimisation parameters are hundreds and more face unusual computational limitations. Algorithms, which perform well on low number of dimensions, when are applied to high dimensional space suffers insuperable difficulties. This article presents an investigation on 200 dimensional scalable, heterogeneous, real-value, numerical tests. For some of these tests optimal values are dependent on dimensions’ number and virtually unknown for variety of dimensions. Dependence on initialisation for successful identification of optimal values is analysed by comparison between experiments with start from random initial locations and start from one location. The aim is to: (1) assess dependence on initialisation in optimisation of 200 dimensional tests; (2) evaluate tests complexity and required for their resolving periods of time; (3) analyse adaptation to tasks with unknown solutions; (4) identify specific peculiarities which could support the performance on high dimensions (5) identify computational limitations which numerical methods could face on high dimensions. Presented and analysed experimental results can be used for further comparison and evaluation of real value methods

    Performance evaluation on optimisation of 200 dimensional numerical tests - results and issues

    Get PDF
    Abstract: Many tasks in science and technology require optimisation. Resolving such tasks could bring great benefits to community. Multidimensional problems where optimisation parameters are hundreds and more face unusual computational limitations. Algorithms, which perform well on low number of dimensions, when are applied to high dimensional space suffers insuperable difficulties. This article presents an investigation on 200 dimensional scalable, heterogeneous, real-value, numerical tests. For some of these tests optimal values are dependent on dimensions’ number and virtually unknown for variety of dimensions. Dependence on initialisation for successful identification of optimal values is analysed by comparison between experiments with start from random initial locations and start from one location. The aim is to: (1) assess dependence on initialisation in optimisation of 200 dimensional tests; (2) evaluate tests complexity and required for their resolving periods of time; (3) analyse adaptation to tasks with unknown solutions; (4) identify specific peculiarities which could support the performance on high dimensions (5) identify computational limitations which numerical methods could face on high dimensions. Presented and analysed experimental results can be used for further comparison and evaluation of real value methods

    Enhancing Cooperative Coevolution for Large Scale Optimization by Adaptively Constructing Surrogate Models

    Full text link
    It has been shown that cooperative coevolution (CC) can effectively deal with large scale optimization problems (LSOPs) through a divide-and-conquer strategy. However, its performance is severely restricted by the current context-vector-based sub-solution evaluation method since this method needs to access the original high dimensional simulation model when evaluating each sub-solution and thus requires many computation resources. To alleviate this issue, this study proposes an adaptive surrogate model assisted CC framework. This framework adaptively constructs surrogate models for different sub-problems by fully considering their characteristics. For the single dimensional sub-problems obtained through decomposition, accurate enough surrogate models can be obtained and used to find out the optimal solutions of the corresponding sub-problems directly. As for the nonseparable sub-problems, the surrogate models are employed to evaluate the corresponding sub-solutions, and the original simulation model is only adopted to reevaluate some good sub-solutions selected by surrogate models. By these means, the computation cost could be greatly reduced without significantly sacrificing evaluation quality. Empirical studies on IEEE CEC 2010 benchmark functions show that the concrete algorithm based on this framework is able to find much better solutions than the conventional CC algorithms and a non-CC algorithm even with much fewer computation resources.Comment: arXiv admin note: text overlap with arXiv:1802.0974
    • …
    corecore