945 research outputs found

    ATLANTIDES: An Architecture for Alert Verification in Network Intrusion Detection Systems

    Get PDF
    We present an architecture designed for alert verification (i.e., to reduce false positives) in network intrusion-detection systems. Our technique is based on a systematic (and automatic) anomaly-based analysis of the system output, which provides useful context information regarding the network services. The false positives raised by the NIDS analyzing the incoming traffic (which can be either signature- or anomaly-based) are reduced by correlating them with the output anomalies. We designed our architecture for TCP-based network services which have a client/server architecture (such as HTTP). Benchmarks show a substantial reduction of false positives between 50% and 100%

    Intrusion detection based on behavioral rules for the bytes of the headers of the data units in IP networks

    Get PDF
    Nowadays, communications through computer networks are of utmost importance for the normal functioning of organizations, worldwide transactions and content delivery. These networks are threatened by all kinds of attacks, leading to traffic anomalies that will eventually disrupt the normal behaviour of the networks, exploring specific breaches on a system component or exhausting network resources. Automatic detection of these network anomalies comprises one of the most important resources for network administration, and Intrusion Detection Systems(IDSs) are amongst the systems responsible for this automatic detection. This dissertation starts from the assumption that it is possible to use machine learning to, consistently and automatically, produce rules for an intrusion detector based on statistics for the first 64 bytes of the headers of Internet Protocol (IP) packets. The survey on the state of the art on related works and currently available IDSs shows that the specific approach taken here is worth to be explored. The decision tree learning algorithm known as C4.5 is identified as a suitable means to produce the aforementioned rules, due to the similarity between their syntax and the tree structure. Several rules are then devised using the ML approach for several attacks. The attacks were the same used in a previous work, in which the rules were devised manually. Both rule sets are then compared to show that, in fact, it is possible to construct rules using the approach taken herein, and that the rules created resorting to the C4.5 algorithm are superior to the ones devised after thorough human analysis of several statistics calculated for the bytes of the headers of the packets. To compare them, each rule set was used to detect intrusions in third party traces containing attacks and in live traffic during simulation of attacks. Most of the attacks producing noticeable impact on the headers were detected by both rule sets, but the results for the third party traces were better in the case of the ML devised rules, providing a clear evidence for the aforementioned assumptions.Hoje em dia, as comunicações através de redes informáticas são da maior importância para o normal funcionamento das organizações, transações mundiais e entrega de conteúdos. Essas redes são ameaçadas por todo o tipo de ataques, levando a anomalias no tráfego, que eventualmente vão corromper o normal funcionamento da rede, explorando falhas específicas num componente de um sistema, ou esgotando os recursos de rede. A deteção automática dessas anomalias de rede é um dos recursos mais importantes para os administradores de rede, e os Sistemas de Deteção de Intrusões estão entre os sistemas responsáveis por essa deteção. Esta dissertação tem como ponto de partida, a assunção que é possível usar mecanismos de aprendizagem automática para produzir, de modo consistente e automático, regras para a deteção de intrusões, baseadas em estatísticas dos primeiros 64 bytes dos cabeçalhos dos pacotes IP. O estudo sobre o estado da arte em trabalhos da área, e em sistemas de deteção atualmente disponíveis, mostrou que o método usado nesta dissertação merece ser estudado. O algoritmo de árvores de decisão C4.5 foi identificado como um meio apropriado para produzir as regras já referidas, devido à semelhança entre a sintaxe das mesmas e a estrutura em árvore deste algoritmo. Várias regras foram depois produzidas para vários tipos de ataque, usando a abordagem por aprendizagem automática. Os ataques tomados em consideração foram os mesmos que foram utilizados num trabalho anterior, em que a regras foram concebidas manualmente. Ambos os conjuntos de regras são depois comparados, para mostrar que, de facto, é possível construir regras através da abordagem utilizada nesta dissertação, e que as regras criadas através do algoritmo C4.5 são superiores às que foram criadas através de análise humana das várias estatísticas calculadas para os bytes dos cabeçalhos dos pacotes. Para as comparar, cada conjunto de regras foi utilizado para detetar intrusões em registos de tráfego disponíveis na Internet contendo ataques e em tráfego em tempo real, durante a simulação de ataques. A maioria dos ataques que produz um forte impacto nos cabeçalhos dos pacotes foi detetado por ambos os conjuntos, mas os resultados com os registos retirados da Internet foram melhores para as regras produzidas por aprendizagem automática, dando uma prova clara para o que foi previamente assumido

    Real-time detection of grid bulk transfer traffic

    Get PDF
    The current practice of physical science research has yielded a continuously growing demand for interconnection network bandwidth to support the sharing of large datasets. Academic research networks and internet service providers have provisioned their networks to handle this type of load, which generates prolonged, high-volume traffic between nodes on the network. Maintenance of QoS for all network users demands that the onset of these (Grid bulk) transfers be detected to enable them to be reengineered through resources specifically provisioned to handle this type of traffic. This paper describes a real-time detector that operates at full-line-rate on Gb/s links, operates at high connection rates, and can track the use of ephemeral or non-standard ports

    IoT Malware Network Traffic Classification using Visual Representation and Deep Learning

    Get PDF
    With the increase of IoT devices and technologies coming into service, Malware has risen as a challenging threat with increased infection rates and levels of sophistication. Without strong security mechanisms, a huge amount of sensitive data is exposed to vulnerabilities, and therefore, easily abused by cybercriminals to perform several illegal activities. Thus, advanced network security mechanisms that are able of performing a real-time traffic analysis and mitigation of malicious traffic are required. To address this challenge, we are proposing a novel IoT malware traffic analysis approach using deep learning and visual representation for faster detection and classification of new malware (zero-day malware). The detection of malicious network traffic in the proposed approach works at the package level, significantly reducing the time of detection with promising results due to the deep learning technologies used. To evaluate our proposed method performance, a dataset is constructed which consists of 1000 pcap files of normal and malware traffic that are collected from different network traffic sources. The experimental results of Residual Neural Network (ResNet50) are very promising, providing a 94.50% accuracy rate for detection of malware traffic.Comment: 10 pages, 5 figures, 2 table

    Advanced security aspects on Industrial Control Network.

    Get PDF
    Security threats are one of the main problems of this computer-based era. All systems making use of information and communication technologies (ICT) are prone to failures and vulnerabilities that can be exploited by malicious software and agents. In the latest years, Industrial Critical Installations started to use massively network interconnections as well, and what it is worst they came in contact with the public network, i.e. with Internet. Industrial networks are responsible for process and manufacturing operations of almost every scale, and as a result the successful penetration of a control system network can be used to directly impact those processes. Consequences could potentially range from relatively benign disruptions, such as the disruption of the operation (taking a facility offline), the alteration of an operational process (changing the formula of a chemical process), all the way to deliberate acts of sabotage that are intended to cause harm. The interconnectivity of Industrial Control Systems with corporate networks and the Internet has significantly increased the threats to critical infrastructure assets. Meanwhile, traditional IT security solutions such as firewalls, intrusion detection systems and antivirus software are relatively ineffective against attacks that specifically target vulnerabilities in SCADA protocols. This presents presents an innovative approach to Intrusion Detection in SCADA systems based on the concept of Critical State Analysis and State Proximity. The theoretical framework is supported by tests conducted with an Intrusion Detection System prototype implementing the proposed detection approach

    Advanced security aspects on Industrial Control Network.

    Get PDF
    Security threats are one of the main problems of this computer-based era. All systems making use of information and communication technologies (ICT) are prone to failures and vulnerabilities that can be exploited by malicious software and agents. In the latest years, Industrial Critical Installations started to use massively network interconnections as well, and what it is worst they came in contact with the public network, i.e. with Internet. Industrial networks are responsible for process and manufacturing operations of almost every scale, and as a result the successful penetration of a control system network can be used to directly impact those processes. Consequences could potentially range from relatively benign disruptions, such as the disruption of the operation (taking a facility offline), the alteration of an operational process (changing the formula of a chemical process), all the way to deliberate acts of sabotage that are intended to cause harm. The interconnectivity of Industrial Control Systems with corporate networks and the Internet has significantly increased the threats to critical infrastructure assets. Meanwhile, traditional IT security solutions such as firewalls, intrusion detection systems and antivirus software are relatively ineffective against attacks that specifically target vulnerabilities in SCADA protocols. This presents presents an innovative approach to Intrusion Detection in SCADA systems based on the concept of Critical State Analysis and State Proximity. The theoretical framework is supported by tests conducted with an Intrusion Detection System prototype implementing the proposed detection approach

    Acceleration of Statistical Detection of Zero-day Malware in the Memory Dump Using CUDA-enabled GPU Hardware

    Get PDF
    This paper focuses on the anticipatory enhancement of methods of detecting stealth software. Cyber security detection tools are insufficiently powerful to reveal the most recent cyber-attacks which use malware. In this paper, we will present first an idea of the highest stealth malware, as this is the most complicated scenario for detection because it combines both existing anti-forensic techniques together with their potential improvements. Second, we will present new detection methods which are resilient to this hidden prototype. To help solve this detection challenge, we have analyzed Windows’ memory content using a new method of Shannon Entropy calculation; methods of digital photogrammetry; the Zipf–Mandelbrot law, as well as by disassembling the memory content and analyzing the output. Finally, we present an idea and architecture of the software tool, which uses CUDA-enabled GPU hardware, to speed-up memory forensics. All three ideas are currently a work in progress. Keywords: rootkit detection, anti-forensics, memory analysis, scattered fragments, anticipatory enhancement, CUDA

    Acceleration of Statistical Detection of Zero-day Malware in the Memory Dump Using CUDA-enabled GPU Hardware

    Get PDF
    This paper focuses on the anticipatory enhancement of methods of detecting stealth software. Cyber security detection tools are insufficiently powerful to reveal the most recent cyber-attacks which use malware. In this paper, we will present first an idea of the highest stealth malware, as this is the most complicated scenario for detection because it combines both existing anti-forensic techniques together with their potential improvements. Second, we present new detection methods, which are resilient to this hidden prototype. To help solve this detection challenge, we have analyzed Windows memory content using a new method of Shannon Entropy calculation; methods of digital photogrammetry; the Zipf Mandelbrot law, as well as by disassembling the memory content and analyzing the output. Finally, we present an idea and architecture of the software tool, which uses CUDA enabled GPU hardware to speed-up memory forensics. All three ideas are currently a work in progress
    corecore