994 research outputs found

    Delivering live-action to handheld devices: experimental results and recommendations

    Get PDF

    MAC-layer approaches for security and performance enhancement in IEEE 802.11

    Get PDF
    Over the past few years, wireless networks are becoming increasingly popular. The dominant question facing the wireless network today is: how can the network meet the needs of various users and applications? Two basic and primary needs for users are efficiency and security. To deal with these two concerns, this dissertation investigates the two areas and proposes four MAC-level approaches for security and performance enhancement in IEEE 802.11.;In the first part, we propose three MAC-level approaches to improve the throughput performance in wireless LANs, i.e., the Freeze Counter scheme (FC), the Dynamically Adaptive Retransmission (DAR), and the Quick Acknowledgement (QA) scheme. The Freeze Counter scheme is an adaptive error recovery mechanism in 802.11, which can perform different actions according to the reasons for frame losses. Dynamically Adaptive Retransmission scheme is an enhanced feedback scheme in 802.11. We propose a Quick Acknowledgement (QA) scheme as a replacement for positive acknowledgement in IEEE 802.11. By using similar concepts as selective ACK and negative ACK, the proposed protocol solves the inefficiency problem of positive ACK in 802.11.;In the second part, we propose a lightweight statistical authentication protocol for wireless networks. With more and more applications on wireless networks, new concerns are raised when it comes to security issues. Authentication service particularly becomes one of the basic but necessary security measures for wireless applications. However, traditional authentication protocols for wired networks do not work well in a wireless environment due to unique characteristics. To meet this target, we propose a lightweight statistical authentication protocol for wireless networks, namely Shepherd. To solve the inherent out-of-sync problem with Shepherd protocol, we develop three synchronization schemes with their statistical methods. In Shepherd, the legitimacy of a mobile node is determined by continuously checking a series of random authentication bits where each bit in this stream is piggybacked by a packet. Such an authentication bit stream is generated by both mobile node and access point using the same random number generator under the same shared seed as a key. The complete evaluation and analysis of all proposed approaches have been discussed

    Performance modelling and enhancement of wireless communication protocols

    Get PDF
    In recent years, Wireless Local Area Networks(WLANs) play a key role in the data communications and networking areas, having witnessed significant research and development. WLANs are extremely popular being almost everywhere including business,office and home deployments.In order to deal with the modem Wireless connectivity needs,the Institute of Electrical and Electronics Engineers(IEEE) has developed the 802.11 standard family utilizing mainly radio transmission techniques, whereas the Infrared Data Association (IrDA) addressed the requirement for multipoint connectivity with the development of the Advanced Infrared(Alr) protocol stack. This work studies the collision avoidance procedures of the IEEE 802.11 Distributed Coordination Function (DCF) protocol and suggests certain protocol enhancements aiming at maximising performance. A new, elegant and accurate analysis based on Markov chain modelling is developed for the idealistic assumption of unlimited packet retransmissions as well as for the case of finite packet retry limits. Simple equations are derived for the through put efficiency, the average packet delay, the probability of a packet being discarded when it reaches the maximum retransmission limit, the average time to drop such a packet and the packet inter-arrival time for both basic access and RTS/CTS medium access schemes.The accuracy of the mathematical model is validated by comparing analytical with OPNET simulation results. An extensive and detailed study is carried out on the influence of performance of physical layer, data rate, packet payload size and several backoff parameters for both medium access mechanisms. The previous mathematical model is extended to take into account transmission errors that can occur either independently with fixed Bit Error Rate(BER) or in bursts. The dependency of the protocol performance on BER and other factors related to independent and burst transmission errors is explored. Furthermore, a simple-implement appropriate tuning of the back off algorithm for maximizing IEEE 802-11 protocol performance is proposed depending on the specific communication requirements. The effectiveness of the RTS/CTS scheme in reducing collision duration at high data rates is studied and an all-purpose expression for the optimal use of the RTS/CTS reservation scheme is derived. Moreover, an easy-to-implement backoff algorithm that significantly enhances performance is introduced and an alternative derivation is developed based on elementary conditional probability arguments rather than bi-dimensional Markov chains. Finally, an additional performance improvement scheme is proposed by employing packet bursting in order to reduce overhead costs such as contention time and RTS/CTSex changes. Fairness is explored in short-time and long-time scales for both the legacy DCF and packet bursting cases. AIr protocol employs the RTS/CTS medium reservation scheme to cope with hidden stations and CSMA/CA techniques with linear contention window (CW) adjustment for medium access. A 1-dimensional Markov chain model is constructed instead of the bi-dimensional model in order to obtain simple mathematical equations of the average packet delay.This new approach greatly simplifies previous analyses and can be applied to any CSMA/CA protocol.The derived mathematical model is validated by comparing analytical with simulation results and an extensive Alr packet delay evaluation is carried out by taking into account all the factors and parameters that affect protocol performance. Finally, suitable values for both backoff and protocol parameters are proposed that reduce average packet delay and, thus, maximize performance

    Wi-Fi Teeter-Totter: Overclocking OFDM for Internet of Things

    Full text link
    The conventional high-speed Wi-Fi has recently become a contender for low-power Internet-of-Things (IoT) communications. OFDM continues its adoption in the new IoT Wi-Fi standard due to its spectrum efficiency that can support the demand of massive IoT connectivity. While the IoT Wi-Fi standard offers many new features to improve power and spectrum efficiency, the basic physical layer (PHY) structure of transceiver design still conforms to its conventional design rationale where access points (AP) and clients employ the same OFDM PHY. In this paper, we argue that current Wi-Fi PHY design does not take full advantage of the inherent asymmetry between AP and IoT. To fill the gap, we propose an asymmetric design where IoT devices transmit uplink packets using the lowest power while pushing all the decoding burdens to the AP side. Such a design utilizes the sufficient power and computational resources at AP to trade for the transmission (TX) power of IoT devices. The core technique enabling this asymmetric design is that the AP takes full power of its high clock rate to boost the decoding ability. We provide an implementation of our design and show that it can reduce the IoT's TX power by boosting the decoding capability at the receivers

    Evaluations and Enhancements in 802.11n WLANs – Error-Sensitive Adaptive Frame Aggregation

    Get PDF
    IEEE 802.11n is a developing next-generation standard for wireless local area network (LAN). Seamless multimedia traffic connection will become possible with the 802.11n improvement in the Physical and MAC layer. The new 802.11n frame aggregation technique is particularly important for enhancing MAC layer efficiency under high speed wireless LAN. Although the frame aggregation can increase the efficiency in the MAC layer, it does not provide good performance in high BER channels when using large frame aggregation size. An Optimal Frame Aggregation (OFA) technique for AMSDU frame under different BERs in 802.11n WLANs was proposed. However, the suggested algorithm does not take into account the loss rate and the delay performance requirements for Voice or Video multimedia traffic in various BER channels. The optimal frame size can provide good throughput in the network, but the delay might exceed the Quality of Service (QoS) requirement of Voice traffic or the Frame-Error-Rate (FER) might exceed the maximum loss rate tolerable by the streaming Video traffic. We propose an Error- Sensitive Adaptive Frame Aggregation (ESAFA) scheme which can dynamically set the size of AMSDU frame based on the maximum Frame-Error-Rate (FER) tolerable by a particular multimedia traffic. The simulations show that our adaptive algorithm outperforms the optimal frame algorithm by improving both the delay and the loss rate in the 802.11n WLANs. The measured FER of the Error-Sensitive Adaptive Frame Aggregation scheme can be kept at about the same as the loss rate requirement for Video traffic even under high Bit-Error-Rate (BER) channel. The delay compared to OFA is also decreased by around 50% under different channel conditions. Moreover, the results show that the Error-Sensitive Adaptive Frame Aggregation scheme works particularly well in error-prone wireless networks

    Automation, Protection and Control of Substation Based on IEC 61850

    Get PDF
    Reliability of power system protection system has been a key issue in the substation operation due to the use of multi-vendor equipment of proprietary features, environmental issues, and complex fault diagnosis. Failure to address these issues could have a significant effect on the performance of the entire electricity grid. With the introduction of IEC 61850 standard, substation automation system (SAS) has significantly altered the scenario in utilities and industries as indicated in this thesis
    • …
    corecore