7 research outputs found

    Enhancing source-based clone detection using intermediate representation

    Get PDF
    Abstract-Detecting software clones in large scale projects helps improve the maintainability of large code bases. The source code representation (e.g., Java or C files) of a software system has traditionally been used for clone detection. In this paper, we propose a technique that transforms the source code to an intermediate representation, and then reuses established source-based clone detection techniques to detect clones in the intermediate representation. The clones are mapped back to the source code and are used to augment the results reported by source-based clone detection. We demonstrate the performance of our new technique using systems from the Bellon clone evaluation benchmark. The result shows that our technique can detect Type 3 clones. Our technique has higher recall with minimal drop in precision using Bellon corpus. By examining the complete clone groups, our technique has higher precision than the standalone string based and token based clone detectors

    An Empirical Assessment of Bellon's Clone Benchmark

    Get PDF
    Context: Clone benchmarks are essential to the assessment and improvement of clone detection tools and algorithms. Among existing benchmarks, Bellon’s benchmark is widely used by the research community. However, a serious threat to the validity of this benchmark is that reference clones it contains have been manually validated by Bellon alone. Other persons may disagree with Bellon’s judgment. Ob-jective: In this paper, we perform an empirical assessment of Bellon’s benchmark. Method: We seek the opinion of eighteen participants on a subset of Bellon’s benchmark to determine if researchers should trust the reference clones it contains. Results: Our experiment shows that a significant amount of the reference clones are debatable, and this phe-nomenon can introduce noise in results obtained using this benchmark

    A systematic literature review on source code similarity measurement and clone detection: techniques, applications, and challenges

    Full text link
    Measuring and evaluating source code similarity is a fundamental software engineering activity that embraces a broad range of applications, including but not limited to code recommendation, duplicate code, plagiarism, malware, and smell detection. This paper proposes a systematic literature review and meta-analysis on code similarity measurement and evaluation techniques to shed light on the existing approaches and their characteristics in different applications. We initially found over 10000 articles by querying four digital libraries and ended up with 136 primary studies in the field. The studies were classified according to their methodology, programming languages, datasets, tools, and applications. A deep investigation reveals 80 software tools, working with eight different techniques on five application domains. Nearly 49% of the tools work on Java programs and 37% support C and C++, while there is no support for many programming languages. A noteworthy point was the existence of 12 datasets related to source code similarity measurement and duplicate codes, of which only eight datasets were publicly accessible. The lack of reliable datasets, empirical evaluations, hybrid methods, and focuses on multi-paradigm languages are the main challenges in the field. Emerging applications of code similarity measurement concentrate on the development phase in addition to the maintenance.Comment: 49 pages, 10 figures, 6 table

    Towards Semantic Clone Detection, Benchmarking, and Evaluation

    Get PDF
    Developers copy and paste their code to speed up the development process. Sometimes, they copy code from other systems or look up code online to solve a complex problem. Developers reuse copied code with or without modifications. The resulting similar or identical code fragments are called code clones. Sometimes clones are unintentionally written when a developer implements the same or similar functionality. Even when the resulting code fragments are not textually similar but implement the same functionality they are still considered to be clones and are classified as semantic clones. Semantic clones are defined as code fragments that perform the exact same computation and are implemented using different syntax. Software cloning research indicates that code clones exist in all software systems; on average, 5% to 20% of software code is cloned. Due to the potential impact of clones, whether positive or negative, it is essential to locate, track, and manage clones in the source code. Considerable research has been conducted on all types of code clones, including clone detection, analysis, management, and evaluation. Despite the great interest in code clones, there has been considerably less work conducted on semantic clones. As described in this thesis, I advance the state-of-the-art in semantic clone research in several ways. First, I conducted an empirical study to investigate the status of code cloning in and across open-source game systems and the effectiveness of different normalization, filtering, and transformation techniques for detecting semantic clones. Second, I developed an approach to detect clones across .NET programming languages using an intermediate language. Third, I developed a technique using an intermediate language and an ontology to detect semantic clones. Fourth, I mined Stack Overflow answers to build a semantic code clone benchmark that represents real semantic code clones in four programming languages, C, C#, Java, and Python. Fifth, I defined a comprehensive taxonomy that identifies semantic clone types. Finally, I implemented an injection framework that uses the benchmark to compare and evaluate semantic code clone detectors by automatically measuring recall

    Source Code Similarity and Clone Search

    Get PDF
    Historically, clone detection as a research discipline has focused on devising source code similarity measurement and search solutions to cancel out effects of code reuse in software maintenance. However, it has also been observed that identifying duplications and similar programming patterns can be exploited for pragmatic reuse. Identifying such patterns requires a source code similarity model for detection of Type-1, 2, and 3 clones. Due to the lack of such a model, ad-hoc pattern detection models have been devised as part of state of the art solutions that support pragmatic reuse via code search. In this dissertation, we propose a clone search model which is based on the clone detection principles and satisfies the fundamental requirements for supporting pragmatic reuse. Our research presents a clone search model that not only supports scalability, short response times, and Type-1, 2 and 3 detection, but also emphasizes the need for supporting ranking as a key functionality. Our model takes advantage of a multi-level (non-positional) indexing approach to achieve a scalable and fast retrieval with high recall. Result sets are ranked using two ranking approaches: Jaccard similarity coefficient and the cosine similarity (vector space model) which exploits the code patterns’ local and global frequencies. We also extend the model by adapting a form of semantic search to cover bytecode code. Finally, we demonstrate how the proposed clone search model can be applied for spotting working code examples in the context of pragmatic reuse. Further evidence of the applicability of the clone search model is provided through performance evaluation

    Code similarity and clone search in large-scale source code data

    Get PDF
    Software development is tremendously benefited from the Internet by having online code corpora that enable instant sharing of source code and online developer's guides and documentation. Nowadays, duplicated code (i.e., code clones) not only exists within or across software projects but also between online code repositories and websites. We call them "online code clones."' They can lead to license violations, bug propagation, and re-use of outdated code similar to classic code clones between software systems. Unfortunately, they are difficult to locate and fix since the search space in online code corpora is large and no longer confined to a local repository. This thesis presents a combined study of code similarity and online code clones. We empirically show that many code snippets on Stack Overflow are cloned from open source projects. Several of them become outdated or violate their original license and are possibly harmful to reuse. To develop a solution for finding online code clones, we study various code similarity techniques to gain insights into their strengths and weaknesses. A framework, called OCD, for evaluating code similarity and clone search tools is introduced and used to compare 34 state-of-the-art techniques on pervasively modified code and boiler-plate code. We also found that clone detection techniques can be enhanced by compilation and decompilation. Using the knowledge from the comparison of code similarity analysers, we create and evaluate Siamese, a scalable token-based clone search technique via multiple code representations. Our evaluation shows that Siamese scales to large-scale source code data of 365 million lines of code and offers high search precision and recall. Its clone search precision is comparable to seven state-of-the-art clone detection tools on the OCD framework. Finally, we demonstrate the usefulness of Siamese by applying the tool to find online code clones, automatically analyse clone licenses, and recommend tests for reuse
    corecore