
Enhancing Source-Based Clone Detection Using Intermediate Representation

Gehan M. K. Selim

School of Computing, Queens University

Kingston, Ontario, Canada, K7L3N6

gehan@cs.queensu.ca

King Chun Foo, Ying Zou

Department of Electrical and Computer Engineering,

Queens University,

Kingston, Ontario, Canada, K7L3N6

3kcdf@queensu.ca, ying.zou@queensu.ca

Abstract— Detecting software clones in large scale projects

helps improve the maintainability of large code bases. The

source code representation (e.g., Java or C files) of a software

system has traditionally been used for clone detection. In this

paper, we propose a technique that transforms the source code

to an intermediate representation, and then reuses established

source-based clone detection techniques to detect clones in the

intermediate representation. The clones are mapped back to

the source code and are used to augment the results reported

by source-based clone detection. We demonstrate the

performance of our new technique using systems from the

Bellon clone evaluation benchmark. The result shows that our

technique can detect Type 3 clones. Our technique has higher

recall with minimal drop in precision using Bellon corpus. By

examining the complete clone groups, our technique has higher

precision than the standalone string based and token based

clone detectors.

Keywords- software clones, intermediate representation,

token based clone detection tools, string based clone detection

tools.

I. INTRODUCTION

Code clones are sets of syntactically or semantically
similar code segments residing at different locations in the
source code. Code clones are generally considered to be a
contributing factor that leads to software maintenance
problems [2]. The primary concern is that programmers often
reuse existing solutions by copying and pasting code lines
with little or no modification. This reuse scheme is error
prone. For example, 34 out of 35 errors in a single file under
the Linux drivers/i2o directory were caused by copying and
pasting activities [7]. To ensure a thorough correction of
errors upon discovery, programmers must apply their fixes to
all duplicated code segments.

The level of code similarity ranges from identical code
segments (Type 1), code segments with slight renaming
(Type 2), and slightly renamed segments with additional or
removed intermediate lines (Type 3) [16] [20]. The detection
of these types of clones varies based on the techniques used
for detecting them, with more complex techniques being able
to detect Type 3 clones but require additional processing
power. For example, string based techniques [11] [28] can
recognize Type 1 clones. Token based techniques can
identify Type 1 and 2 clones. Both string based and token
based techniques can perform very fast detection. However,
most string based or token based techniques fail to directly
detect Type 3 clones without any post-processing steps to
combine Type 1 and Type 2 clones to form Type 3 clones
[21][23]. Generally, Type 3 clones can be detected with
Abstract Syntax Tree (AST) based [9] and Program

Dependency Graph (PDG) based techniques [14] [18]. Such
techniques may have higher computation requirements than
the string based and token based techniques. An ideal
detection technique would perform as fast as string based or
token based techniques while being able to detect Type 3
clones. Koschke et al. [15] propose a clone detection
technique that uses abstract suffix trees of the source code to
find Type 3 clones in linear time and space.

Instead of detecting clones on the source code
represented in AST or PDG, we believe that we can uncover
Type 3 clones by analyzing the intermediate representation
(e.g., three address instructions) using string based or token
based techniques. These clones could be then added to the
Type 1 and Type 2 clones which are much easier to detect.
Our intuition is derived from the fact that compilers tend to
simplify and normalize many high level constructs into the
same low level constructs. For example, we would expect
that „for‟ and „while‟ loops to be mapped to the same
intermediate representation (e.g., a goto statement). We
would expect a compiler to perform consistent statement
reordering when emitting the intermediate representation.
Such re-ordering would reduce high variation in code
segments.

The main contributions of our work are as follows:
1. We propose a hybrid clone detection technique which

can detect Type 3 clones by combining source code and

intermediate code detected clones. The intermediate

code clones are mapped back to the source code.

2. We demonstrate our technique on the Java

programming language. We use the Soot framework

[24] to perform the intermediate code analysis. We use

existing string based and token based clone detectors

(i.e., CCFinder [25] and Simian [28]) to perform the

clone detection.

3. We quantitatively and qualitatively study the

performance of our technique using the Bellon clone

evaluation benchmark [6]. Our study shows that our

technique has higher recall for three projects compared

to other source-based techniques using Bellon corpus.

Our technique has higher precision than the standalone

string or token based clone detectors by checking all

clone groups.
The rest of this paper is organized as follows. Section II

gives an overview of the Soot framework and its
intermediate representation of a Java application. The
intermediate representation is called Jimple. Our proposed
hybrid technique analyzes the Jimple code for clones using
traditional string based and token based clone detectors.

mailto:3kcdf@queensu.ca

Section III discusses our proposed clone detection technique.
Section IV describes the results of our case study, and
explores threats to validity. Section V covers related research
work in the field of clone detection. Finally, Section VI
concludes the paper and explores the future work.

II. OVERVIEW OF JIMPLE REPRESENTATION

We demonstrate our clone detection technique on the
Java programming language. To study the intermediate
representation of a Java application, we use the Soot
framework [28]. The Soot framework uses the Jimple
language to produce a unified format for representing Java
source code. Jimple is an alternative representation to the
stack based Java binary code. Jimple serves as an abstraction
layer on top of the binary code. Jimple dramatically reduces
the number of operations needed to represent the Java binary
code. We believe that this limited number of operations leads
to a reduced dissimilarity in cloned code segments and helps
us locate clone instances with complex variations. Similar to
binary code, Jimple uses unconditional transfer of control to
represent all Java control structure (e.g., if-else, for-loop). In
other words, all control structures are translated to a
combination of „goto‟ statements, program labels, and „nop‟
statements. The Soot framework generates line tags that
preserve the mapping of Jimple lines back to their
corresponding Java lines. Details about the Soot framework
and its representations can be found in [24].

Figure 1 . A sample Java code and its corresponding Jimple code

Figure 1 shows a sample Java code and its corresponding
Jimple code. A simple Java method that calculates the
factorial of a given integer is listed on the left; the method is
translated into Jimple on the right. As shown in Figure 1, the
Java line tags generated by Soot are captured as comments

and listed beside each Jimple code line. These generated tags
help automatically map the Jimple code lines to the
originating Java code lines.

As shown in line 2, Jimple code declares all variables,
such as local variables (e.g., x and result) and temporary
variables (e.g., temp$0 and temp$1). In lines 3 to 5, the
Jimple code initializes the function argument (i.e.,
x:=@parameter0:int) and variables. Lines 7 to 10 test the
execution condition for the while statement as mapped to the
Java code. Lines 12 to 20 correspond to the body of the
while-loop (i.e., lines 4 to 6 in Java code). To complete the
Java while-loop, a „goto‟ statement in line 20 of Jimple code
re-directs the execution to line 7 to test the conditions for the
next iteration. Line 24 corresponds to the Java code that
returns the result following the execution of the while
statement (i.e., line 8 in Java).

III. PROPOSED TECHNIQUE

Figure 2 gives an overview of our hybrid clone detection
technique. The technique produces a list of cloned code
segments by combining source-code clones and
intermediate-code clones that are mapped to the
corresponding source code.

Our work strives for detecting more complex clones (e.g.,
Type 3 and gapped clones) using traditional, high
performance source-code clone detection tools (i.e., string
and token based clone detectors). To use such tools to detect
clones in the intermediate code, the Soot framework
automatically generates Jimple code corresponding to the
source code. The Soot framework can generate the Jimple
code from the binary (i.e., class) or the source file. We use
the source file to avoid transforming the external library code
and binary code annotations from binary code to the Jimple
code. The Jimple files are named with the extension of
“.Jimple” by the Soot framework. While there exist no tools
to detect clones in Jimple code, Jimple has a very similar
structure to Java. We force the source-based clone detectors
to recognize the Jimple code as Java code. For example, we
force Simian (i.e., a string based clone detector) to recognize
the Jimple code as Java code by configuring the language
option to “Java”. To use CCFinder (i.e., a token based clone
detector), we rename each Jimple file with the extension of
“.Java”. We refer to this step as the „Java-fication‟ step as
shown in Figure 2. The content of the Jimple code remains
intact during the Java-fiction step. Traditional source-based
clone detection tools are then executed on the Java-like
Jimple code. The Soot framework automatically embeds the
corresponding line number of the Java code for each line of
Jimple code. The detected clones in Jimple are automatically
mapped back to the corresponding source code. The mapped-
Jimple clones and the source-based clones are then merged
to produce the final results of our technique.

We discuss below our approach to merge the mapped-
Jimple clones and the source-based clones. We also discuss
the impact of our technique on the detection of Type 3
clones.

Java Jimple

1 static int factorial (int x){

2 int result = 1;
3 int i = 2;

4 while (i <= x) {

5 result *= i;

6 i++;

7 }

8 return result;
9 }

1 static int factorial (int) {

2 int x, result, i, temp$0, temp$1,
temp$2, temp$3;

3 x := @parameter0: int; /*1*/

4 result = 1; /*2*/

5 i = 2; /*3*/

6

7 label0:
8 nop; /*3*/

9 if i <= x goto label1; /*4*/

10 goto label2;/*4*/
11

12 label1:

13 nop; /*4*/
14 temp$0 = result; /*4*/

15 temp$1 = temp$0 * i; /*4*/

16 result = temp$1; /*5*/
17 temp$2 = i; /*5*/

18 temp$3 = temp$2 + 1; /*6*/

19 i = temp$3; /*6*/
20 goto label0; /*4*/

21

22 label2:
23 nop; /*4*/

24 return result; /*8*/

25 }

A. Merging Jimple Clones and Java Source Clones

We consider three cases for merging Java clone groups
and Jimple clone groups: complete merge, partial merge and
no merge. The merging process is applied directly to the
outputs of clone detectors.

Complete merging of clone groups: For a Jimple clone
group to be merged to a Java clone group, there must be a
one-to-one mapping between the clone instances from the
Jimple and Java clone groups, such that the Java code lines
mapped from a Jimple clone instance are a subset of the Java
code lines of a Java clone instance. More specifically, a
Jimple clone instance can be mapped to a Java clone instance
when a Jimple clone instance contains consecutive
statements without go to statements. If a Jimple clone
instance contains code that corresponds to a Java control
statement (e.g., if-else and for statement), the Jimple clone
instance would cover a continuous sequence of Java
statements before the subsequent control statement. For
example in Figure 1, a Jimple clone instance which covers
lines 4 to 20 can be mapped to a Java clone instance that
covers from lines 2 to 6. In case of complete merging, the
Java and Jimple clone instances reveal the same information.
Hence, we discard the Jimple clone instances.

Partial Merging of Clone Groups: Instead of
encapsulating another clone instance completely, Java and
Jimple clone instances can overlap. To group these two types
of clone instances, the two overlapping clone instances must
cover an overlapping threshold (e.g., 70%) of common lines
of Java code in each group of clone instances. Hence, we are
confident that the majority of the Java code is common in the
original Java clone instances and the segments mapped from
Jimple clone instances. We evaluate the overlap between the
Java and Jimple clone instances using equation (1). Different
overlapping threshold values are experimented in this study.

Instances Both Of Code Of Lines Total

Instances Clone 2 Between Lines eConsecutiv Matching
Ovelap 

(1)
TABLE I.

EXAMPLES OF PARTIAL MAPPING BETWEEN JIMPLE AND JAVA CODE

Features Java Code Jimple Code

Expression i++; i = i + 1; ++i; temp = i + 1; i=temp;

Method

invocation

s = str.toString().trim() temp = str.toString();

s = temp.trim();

Control
structure

do-while, for-loop, while-
loop, for-each-loop, if-

statement, condition

goto label

In case of partial merging, we place the Java and Jimple
clone instances in the same clone group. In our study, we
found that partial mappings between the Jimple and Java
clone instances are caused by different coding styles:

expression shorthand, nested method invocation and
semantically equivalent control statements. Table I shows
some examples of coding styles adopted by developers
according to personal preferences. As shown in Table I, Java
supports three different forms for incrementing an integer.
Similar code segments with minor differences in coding
styles are quantified into Type 3 clones. It is challenging for
string based and token based clone detectors to identify Type
3 clones. Jimple unifies Java source code by expanding
expression shorthand and nested method calls into a unified
form of three-address instructions. For example shown in
Table I, the three forms of incrementing an integer in Java
are converted to a unified form in Jimple. Nested method
invocation can be used in Java code shown in the second row
of Table I. The Jimple code expands the method invocations
into multiple individual method call statements.

Unmerged Clone Groups: If the overlapped lines of
Java code between the Jimple clone instances and Java clone
instances are less than the threshold value (e.g., 70%), the
Java and Jimple clone instances remain unmapped. The
unmapped Jimple clone instances provide the opportunity to
identify Type 3 clones in Java code.

B. Detecting Type 3 Clones
Identifying Gapped Type 3 Clones: A Jimple clone

instance may contain Java code fragment that overlaps with
two Java clone instances from different clone groups. But the
overlapping percentages in both cases are less than the
thresholds. Essentially, the Jimple clone instance when
converted to Java connects the Java clone instances of
different groups to form a larger sized clone instance. This is
particularly important when the smaller sized clone instances
have dependencies. By connecting these smaller sized clone
instances, developers can get a more complete picture of the
computation in the clone instances which in turn help with
the maintenance effort.

Segment A Segment B

1 if (a>b){

2 b++; a=1;
.......

.......

10 } else {

11 b=2;

......

20 }

1 if (a>b) {

2 b++; a=1;
.......

10 } else if (a==b){

11 b=a;

.......

15 } else {

16 b=2;
.......

25 }

Figure 3 An Example of a Type 3 gapped clone instance

It is possible that Java clone instances from two different
clone groups always appear in close proximity to each other.
These Java clone instances, however, are separated by non-
cloned Java code segments, such as additional conditional

Clone

Instance 1

Clone

Instance 2

Java Code

Code

Compilation

Jimple

Code
Java

Fication

Clone

Detection

Java-like Jimple

Code

Jimple

Clones

Clone

Detection

Java

 Clones

Merge

ClonesMap to

Source

Code

Jimple

Clones in

Java

Identify

Type 3

Cones

Updated Java

 Clones

Intermediate Code Clone Detection

Figure 2. An overview of our proposed technique

branches for error checking, and extra computation. For
example shown in Figure 3, both Java clone instances in
segment A are identical to the Java clone instances in
segment B except segment B contains an extra else-if branch
between Lines 10 and 14. Such clone instances of two clone
groups are separated. The clone detectors would detect each
similar portion as a separate clone instance given that the
portion is of sufficient length. We refer to such instances as
“gapped clones” where the instances from different clone
groups are separated by non-cloned code segments [20]. The
gapped clones are considered as Type 3 clones and may not
be detected by existing token based or string based detectors
dependent on the size of the gap. However, in some cases,
the Jimple code corresponding to the separated Java clone
instances is reordered and placed next to each other by Soot.
The non-cloned segments are moved to the end of the two
clone instances. Therefore, the corresponding Jimple clone
instances are contiguous code. We infer gapped Java clones
by mapping Jimple clones to two separated Java clone
instances from different clone groups to form a larger Java
clone instance. We evaluate the similarity of the new Java
clone instances using equation (2) to control the number of
non-cloned lines between both Java clone instances.
Different similarity threshold values are experimented in the
case study.

Instances Both Of Code Of Lines Total

Instances Clone Two Between Lines Cloned Matching
Similarity

 (2)
Identifying Non-Gapped Type 3 Clones: Unmapped

Jimple clone instances provide an opportunity for
discovering new Java clone instances that are missed by a
source-based clone detector. For each unmapped Jimple
clone instance, if the length of the mapped Java code
segments is sufficiently large; above the threshold set by a
clone detector, a new Java clone instance is created from the
mapping. A new Java clone group would contain all
instances of the original Jimple clone group in their mapped
Java source code.

Similar to the cases where a Jimple clone instance is
partially mapped to a Java clone instance, clone detectors fail
to recognize the new Java clone instances mapped from the
Jimple code due to the choice of control statements and
coding styles for writing the same computation in the code
fragments. For example, switch statements in one clone
instance can be represented using a series of if-else-if
conditions in another clone instance; For-loop statements in
one clone instance can be expressed using the equivalent
while statement. Jimple translates the different variations of
a control statement into a common form using goto
statements and labels. As a result, a string based or token
based clone detector can capture similar Jimple segments
that are written in different coding styles when translated
back to Java. This enables the string based or token based
clone detector to detect Type 3 clones which are clones
produced due to minor differences in coding styles [20].

IV. CASE STUDY

We perform a case study to evaluate our new technique.
The goals of the case study are to:

 Qualitatively compare the performance (i.e.,
precision and recall) of our technique with source-
based clone detection techniques. We expect that our
technique would increase the recall. However we
must ensure that the improvement in recall is not
associated with a drastic drop in precision.

 Examine the types of clone instances reported by our
technique.

In the following subsections, we discuss the experiment
setup and the evaluation results.
A. Experiment Setup

Bellon Benchmark: The Bellon setup is an experimental
setup suggested by Bellon et al. [6] as a means of
standardizing the evaluation of clone detectors. Different
clone detectors are evaluated using eight Java and C systems.
Such clone detectors have different capability to detect Type
1, Type 2 and Type 3 clones. Six leading clone-detection
researchers test their clone detectors on the subject systems.
Due to the time needed to manually verify the results, only
2% of the clone groups reported by the six clone detectors
are randomly selected and evaluated by Bellon. Evaluation is
done incrementally where 1% of the reported clone groups
are „oracled‟ for evaluation, then another 1% is tested. Clone
groups validated by Bellon as correctly identified clone
groups are used to build a reference corpus. Each reported
clone group is referred to as a „candidate‟, and each correctly
identified clone group is referred to as a „reference‟. Further
details of the original setup are provided in [6].

Subject Systems: We select three of the four Java
systems used in the Bellon benchmark. Table II summarizes
the characteristics of these three systems.

 Eteria IRC Client (EIRC) is an Internet relay chat
client program.

 Secure Practical Universal Lecture Evaluator (Spule)
automates the evaluation of lecture polls.

 Netbeans-Javadoc is a documentation tool provided
by Netbeans for viewing and generating
documentation of Java projects.

After compiling using the Soot framework, the Jimple
code for the systems is automatically generated. As shown in
Table II, the number of the Jimple code files is more than
their corresponding Java files since the Soot framework
generates separate Jimple files for inner classes. We limit our
study to these three systems since the Soot framework was
not able to process the remaining system due to the lengthy
folder structure of j2sdk1.4.0-Javax-swing.

TABLE II

OVERVIEW OF SUBJECT SYSTEMS

System KLOC

in Java

Java

Files

Jimple

Files

EIRC 11 65 79

Spule 13 58 150

Netbeans-Javadoc 19 101 207

Clone Detectors: We experimented with Simian [28]

and CCFinder [12] [25] as our choice of source-based clone
detectors used by our technique. CCFinder is a token based
clone detector which detects Type 1 and Type 2 clones.

Simian uses a string based technique which normalizes
program identifiers before clone detection. Simian can
analyze code in any format since it is string based. However,
CCFinder does not support clone detection on Jimple format.
Hence, it is the rationale for our Jimple „Java-fication‟ step
in our technique shown in Figure 2.

We used the default thresholds set by the clone detectors
to categorize similar code blocks as clones in both Java code
and Jimple code. Specifically, Simian uses a threshold of 6
lines to treat similar code blocks as clones, and CCFinder has
a threshold of 50 tokens to categorize code blocks as clones.
We configure the CCFinder tool to produce non-overlapping
clones. This option ensures that CCFinder does not report
clone groups that are due to the shifting of the same code
segments by a few lines.

Selection of Overlapping Thresholds: To find the
number of clone groups detected in common from Jimple
and Java, we counted the number of „completely‟ or
„partially‟ merged clone groups between the two code
representations (described in Section III.A). For detecting
partially mapped clone groups, we experimented with
different overlapping thresholds between the clones mapped
from Jimple and the clones from Java. Table III shows the
thresholds and the corresponding statistics. We tried 70%,
80% and 90% to determine when to perform partial merging
of clone groups. For 80% overlap, we got 3 to 5 fewer clone
groups being merged than those merged at 70%. For 90%
overlap, we got 4 to 7 fewer clone groups being merged than
those merged at 70%. As the overlapping threshold
increases, the clone groups to be merged decreases since we
request a higher overlap. However, the decrease in the
number of clone groups is not significant. We choose 70% as
the overlapping threshold to generate our results for the
Bellon performance evaluation.

TABLE III

PARTIAL MERGING RESULTS FOR DIFFERENT OVERLAPPING THRESHOLDS

S
y
st

em

Common Clone Groups
from Jimple and Java

Using Simian

Common Clone Groups
from Jimple and Java Using

CCFinder

Overlapping Thresholds Overlapping Thresholds

70% 80% 90% 70% 80% 90%

EIRC 33 30 29 103 99 98

Spule 79 75 75 200 197 196

Javadoc 67 62 60 259 255 252

Selection of Similarity Thresholds: To find the number

of gapped clones detected from the Jimple representation, we
try several similarity thresholds (described in Section III.B).
Table IV shows the number of gapped clones obtained for
the different thresholds. We tried 90%, 80% and 70% as
similarity thresholds to determine when to combine smaller
Java clones into a bigger gapped Java clone. For 80%
similarity, we got 3 to 4 more gapped Java clone instances
than those obtained when using 90%. For 70% similarity, we
got 4 to 8 more gapped Java clone instances than those
obtained when using 90% similarity. As the similarity
threshold decreases, the gapped Java clone instances
increases since we request a less degree of similarity and
hence less restricting conditions. The increase in the number
of gapped Java clone instances is not significant. We choose

90% as the similarity threshold to generate our results for the
Bellon performance evaluation.

TABLE IV

GAPPED CLONE COUNT FOR DIFFERENT SIMILARITY THRESHOLDS

S
y
st

em
 # Gapped Clone

Instances from Jimple
using Simian

Gapped Clone Instances
from Jimple using

CCFinder

Similarity Thresholds Similarity Thresholds

 90% 80% 70% 90% 80% 70%

EIRC 201 204 209 300 304 307

Spule 166 170 170 500 504 508

Javadoc 522 525 530 570 573 577

B. Performance Evaluation

Evaluation Metrics: We compare the performance of
our technique to Simian alone and to CCFinder alone. We
also compare our performance to the performance of
CloneDR [5], an AST based clone detector, and CLAN [19],
a metric based clone detector. CloneDR and CLAN can
detect Type 3 clones. The results generated from both clone
detectors are available in the Bellon benchmark.

We measure the performance using recall and precision
which are calculated as shown in equations (3) and (4).
Recall is the number of reference clone groups detected by
our technique relative to all of the reference clone groups
available in the benchmark. Precision is the number of
reference clone groups detected by our technique relative to
all the candidate clone groups detected by our technique.

Bellon et al. note that the precision metric would result in
the minimum possible precision of the clone detector under
assessment, since the number of candidates produced by a
clone detector can be very large relative to the number of the
references provided in the benchmark. Hence Bellon et al.
suggest measuring the ratio of rejected candidates; shown in
equation (5). For the rejected ratio, we find how many
candidates are seen by Bellon; whether they were rejected or
accepted as clones, and from those how many are „oracled‟.
The lower the rejected ratio, the better is the performance
since rejected is the inverse of the theoretical precision if
Bellon had manually examined or oracled all of the
generated clone groups, not just 2% of them.

References

ReferencesDetected
Recall 

(3)

Candidates

ReferencesDetected
Precision 



CandidatesOracled

CandidatesRejected
Rejected 

(5)

We also carry out a manual evaluation of all the clone
groups generated by our technique and those generated by
Simian and CCFinder. In the manual evaluation, we verify
the validity of the clone groups and classify the types of
clone groups. Manual evaluation was necessary since the

rejected and precision values available in the Bellon corpus
are derived from the candidates examined by Bellon and
hence can be considered as an incomplete evaluation of our
technique. It took the authors over 8 days to perform the
manual evaluation. The precision of manually verifying all
clone groups is defined in equation (6):

GroupsCloneCandidate

GroupsCloneTrue
Precision 

(6)

Results: The normalized Java code of the test systems
[26] is given as input to our technique which uses Simian
and CCFinder alternatively as the intermediate clone
detector. The systems are also passed to Simian and
CCFinder as standalone clone detectors. For each of these
cases, recall, precision and rejected values are calculated
according to equations (3), (4) and (5) with reference to the
benchmark. The results obtained are shown in Table V,
Table VI and Table VII. We also compare the precision,
recall and rejected values of our technique to those of other
clone detectors that detect Type 3 clones in Table VIII.
Results of Recall (Table V, Table VIII): Our technique
using Simian or CCFinder gives higher recall than that of
Simian or CCFinder when used as a standalone clone
detector. The high recall is mainly because our technique
detects additional correctly identified clone groups present in
the corpus when Jimple code is used for clone detection. The
results also show that our technique using CCFinder
improves more on the performance of CCFinder than our
technique using Simian improves over Simian. This can be
seen from the improved recall which reflects additional
number of detected reference clones of our technique. Thus
we can conclude that our technique improves over the
performance of CCFinder but does not significantly improve
over the performance of Simian. From Table VIII, we can
also see that in general our technique when used with Simian
or CCFinder achieves much higher recall than the recall
achieved by CLAN or CloneDr. Only in the case of Spule,
CloneDR achieves a higher recall than our technique when
used with Simian.

TABLE V

RECALL USING THE BELLON REFERENCE CORPUS

Recall

Our
Technique

using

Simian

Simian

Our
Technique

using

CCFinder

CCFinder

EIRC 0.68 0.6 0.8 0.35

Spule 0.66 0.66 0.94 0.7

Javadoc 0.78 0.76 0.89 0.76

TABLE VI

PRECISION USING THE BELLON REFERENCE CORPUS

Precision

Our

Technique

using
Simian

Simian

Our

Technique

using
CCFinder

CCFinder

EIRC 0.39 0.5 0.35 0.36

Spule 0.84 0.88 0.82 0.90

Javadoc 0.37 0.44 0.28 0.62

TABLE VII

REJECTED VALUES USING THE BELLON REFERENCE CORPUS

Rejected

Our

Technique

using
Simian

Simian Our

Technique

using
CCFinder

CCFinder

EIRC 0.43 0.44 0.30 0.3

Spule 0.24 0.24 0.09 0.22

Javadoc 0.35 0.33 0.32 0.19

TABLE VIII

COMPARISON OF CLAN AND CLONEDR TO OUR TECHNIQUE

 EIRC Spule Javadoc

P
re

ci
si

o
n
 CLAN 0.33 0.37 0.16

CloneDR 0.34 0.32 0.27

Our Technique using Simian 0.39 0.84 0.37

Our Technique using

CCFinder
0.35 0.82 0.28

R
ec

al
l

CLAN 0.18 0.59 0.24

CloneDR 0.28 0.68 0.16

Our Technique using Simian 0.68 0.66 0.78

Our Technique using

CCFinder
0.8 0.94 0.89

R
ej

ec
t

CLAN 0.13 0.2 0

CloneDR 0.15 0.24 0

Our Technique using Simian 0.43 0.24 0.35

Our Technique using

CCFinder
0.30 0.09 0.32

Results of Precision (Table VI, Table VIII): The

precision of our technique is lower than that of the
standalone clone detectors since additional candidate clone
groups are returned. In addition, since the precision is
calculated relative to the corpus, some of the additional and
correctly identified clone groups might not necessarily exist
in the Bellon corpus. The Bellon corpus was built by
subjective evaluation of clones, and only 2% of the available
clone groups were evaluated by Bellon as being correctly
identified clones or not. Hence, the corpus contains a sample
of the available clones in the test systems but not all of them.
From Table VIII, we can see that our technique when used
with Simian or CCFinder achieves much higher precision
than that of CloneDR or CLAN. This can be attributed both
to using Jimple for capturing additional clone groups and to
configuring CCFinder to decrease the number of candidates
returned by our technique when using CCFinder. We do note
that our drop in precision is not a drastic drop except for
Netbeans-Javadoc system.

Results of Rejected Ratio (Table VII, Table VIII):
According to Table VII our technique using CCFinder
outperforms CCFinder when tested on Spule. Our technique
using Simian also outperforms Simian when tested on EIRC.
For the remaining cases, CCFinder and Simian outperform
our technique. The low performance of our techniques is due
to the fact that many clone groups generated by our
technique are not in the Bellon benchmark. From Table VIII,
we also see that our technique usually produces higher
rejected values than those of CLAN and CloneDR. However,
we found that this is because when calculating the rejected
ratio, the number of oracle candidates (i.e., denominator of
the rejected ratio) can be very low and hence the probability
of having candidates rejected from a small number is high.

TABLE IX

PRECISION BASED ON MANUAL EVALUATION

Precision Simian

Our

Technique

using
Simian

CCFinder

Our

Technique

using
CCFinder

EIRC 0.74 0.79 0. 69 0.72

Spule 0.82 0.87 0.79 0.83

Javadoc 0.8 0.84 0.76 0.79

TABLE X

DISTRIBUTION OF CLONE TYPES

S
y

st
e
m

Clone

Type
Simian

Our

Technique

using

Simian

CCFinder

Our

Technique

using

CCFinder

E
IR

C

1 44% 36.5% 28.8% 29.9%

2 30% 32.5% 37% 35%

3 0 10% 3.2% 7.1%

Not
clone

26% 21% 31% 28%

S
p

u
le

1 43% 46.9% 35.5% 30.2%

2 39% 32% 40.5% 45.8%

3 0% 8.1% 3% 7%

Not
clone

18% 13% 21% 17%

Ja
v
ad

o
c

1 42.2% 47.9% 30.8% 32.7%

2 37.8% 30.1% 41.2% 39.3%

3 0% 6% 4% 7%

Not
clone

20% 16% 24% 21%

Results of Precision for all Clone Groups (Table IX,

Table X): Since the Bellon corpus contains 2% of the actual
clone groups available in the systems, the precision
measured reflects the precision of our technique in
comparison to the available fraction of clone groups in the
Bellon corpus. We manually verified the generated clone
groups by examining their validity and the precision of the
detection from our point of view.

Table IX IX shows the results of the precision based on
our manual evaluation. Our technique generates higher
precision than that of the standalone clone detectors. In
general, each Java line maps to one or more Jimple lines. In
many cases the Jimple file could be twice as large in LOC as
its corresponding Java file. This in turn implies the
possibility of more clone groups. The number of correctly
identified clone groups has also increased significantly with
our technique. Table X shows that our technique detects a
more Type 1, Type 2 and Type 3 clones than those detected
by the standalone clone detectors. The percentage of false
clones detected by our technique has decreased.

TABLE XI

COMMON AND GAPPED CLONE GROUPS USING SIMIAN

System

Clone
Groups

from

Java

Clone

Groups

from

Jimple

New

Clone

Groups
from

Jimple

Common

Clone Groups

from Jimple

and Java (%)

Gapped

Clones

in

Jimple

EIRC 72 90 57 33 (36.7%) 201

Spule 123 160 81 79 (49.4%) 166

Javadoc 110 143 76 67 (46.9%) 522

TABLE XII

COMMON AND GAPPED CLONE GROUPS USING CCFINDER

System

Clone
Groups

from

Java

Clone

Groups

from

Jimple

New

Clone

Groups
from

Jimple

Common

Clone Groups

from Jimple

and Java (%)

Gapped

Clones

in

Jimple

EIRC 150 197 94 103 (52.3%) 300

Spule 377 400 100 200 (50%) 500

Javadoc 302 330 71 259 (78.5%) 570

C. Discussion of Results

We structure our discussion along the following 3
questions:

Q1: Can clone groups detected from Jimple code be

mapped to clone groups detected from Java?
We compare the clone groups detected from Jimple and

Java code to investigate if both code representations can
reveal similar cloning information. Table XI compares the
clone groups detected by Simian from each code
representation without merging the clone results. Similarly,
Table XII shows the clone groups detected by CCFinder
from each code representation without merging. The second
column (e.g., # Clone groups from Java) in Table XI and
Table XII lists the number of clone groups detected by the
corresponding clone detector from Java code only. The third
column (e.g., # Clone Groups from Jimple) shows the
number of clone groups detected by the corresponding clone
detector from the Jimple code only. The fourth column (e.g.,
New Clone Groups from Jimple) shows the number of new
clone groups detected by a clone detector from Jimple code,
but not from the Java code. The fifth column (e.g., #
Common Clone Groups from Jimple and Java(%)) lists the
number and the percentage of Jimple clone groups detected
in common with Java clone groups.

From Table XI and Table XII, a considerable number of
clone groups are detected in common by Simian when used
with Jimple and Java code. The percentages of common
clone groups are 36.7%, 49.4% and 46.9% respectively for
EIRC, Spule and Netbeans-Javadoc. Similarly, we examine
the clone groups detected by CCFinder on both
representations. Higher percentages of common clone groups
are obtained: the: 52.3% for EIRC, 75% for Spule and 78.5%
for Netbeans-Javadoc.

We check the clone instances detected in Java code but
not in the corresponding Jimple code. We found that the Java
clone instances are identical in the Java code but the
corresponding Jimple segments use different programming
keywords to distinguish various types of methods being
invoked. For example, Jimple uses the keyword
“interfaceinvoke” to represent calls to methods declared in
interfaces; “virtualinvoke” to represent dynamically
dispatched calls; and “staticinvoke” to represent calls to
static methods. As a result, a clone detector on Jimple code
would fail on cases where a developer uses different types of
method calls on the cloned segments.

As shown in Table XI and Table XII, string or token
based clone detectors on either Java code or Jimple code
detects common clone groups. However, each code

representation detects additional clone groups that are not
detected by the other representation. This implies that
combining the output of clone detection on Java and Jimple
code covers more clone groups than simply using one code
representation for clone detection.

Q2: Can clones from Jimple code be used as connector to

join Java code clones that are separated by irrelevant code

lines?
We investigate if our technique detects gapped clones

initially not captured in Java code. The sixth column (e.g., #
Gapped Clones in Jimple) in Table XI and Table XII show
that our technique can use Jimple code to detect larger clone
instances that are formed from smaller clone instances
detected on Java code. CCFinder detects more gapped clone
instances from Jimple code than Simian. Looking at the
column “#Gapped Clones in Jimple” in Table XI and Table
XII, additional 99, 334 and 48 gapped clone instances
respectively for the three systems are detected by CCFinder.
Such gapped clones are not detected using only Simian or
CCFinder on the Java code. In the case of gapped clones, we
express them in terms of clone instances not clone groups,
because it is possible that not all instances in a clone group
are gapped clones.

For example, Figure 4 shows a pair of Type 3 gapped
Java clone instances and their corresponding Jimple code.
The gap marked in bold in Java Clone instance 2 is a „case‟
statement and two variable definitions added between the
instances of the two clone groups. The corresponding Jimple
code (pointed by the dashed arrow) is also marked in bold.
The Jimple code corresponding to the two different Java
clone instances are clone instances of the same clone group.
Such a gapped clone can be detected by our technique since
the gap in instance 2 is moved to the end of two clone groups
after the Soot framework compiles the Java code to generate
intermediate code. Therefore, the Jimple code corresponding
to the two Java clone instances become identical consecutive
code blocks. Such Jimple clone instances when mapped back
to Java code span the additional lines. Our technique detects
it as a gapped clone. Other clone detectors such as Gemini
[23] can detect gapped clones by visualizing the clone
groups that are separated by a few lines of code. A user can
interactively choose to merge the smaller clones to form a
larger clone. Without such post-processing steps, our
technique automatically detects gapped clones of varying
gap size. As discussed in Section III.B, a similarity threshold
can be specified to control the size of the „gap‟. Our
technique detects gapped clones with an average gap size of
6 lines of code. Comparing the output of our technique with
the output of Simian or CCFinder, small Type 1 and Type 2
clone instances detected by Simian or CCFinder are
recognized by our technique as larger, gapped clones.

Q3: Can we find new clone groups that can be only

detected in the Jimple code?
The major drive behind our technique is to detect Type 3

clones using string and token based clone detectors. We
investigate whether the Jimple clone detection finds new
clones and the distribution of the three types of clones. Table
X demonstrates that our technique locates additional clone
groups of different types by combining Jimple-level
detection and Java-level detection. While maintaining the
simplicity of string and token based clone detectors, our
technique is capable of detecting Type 3 clones (i.e., Type 3
gapped clones and Type 3 non-gapped clones). The Jimple-
level detection using Simian detects 10%, 8.1% and 6%
more Type 3 clones in EIRC, Spule and Netbeans-Javadoc
than Simian does alone. Similarly, our Jimple-level detection
using CCFinder detects 3.9%, 4% and 3% more Type 3
clones in EIRC, Spule and Netbeans-Javadoc than CCFinder
does.

To get an idea of the proportion of the Type 3 non-
gapped clone among the Type 3 clones, we randomly select
10 clone groups classified as Type 3 from each subject
system. From the selected clone groups, we count the
number of gapped and non-gapped clone instances. Table
XIII shows the number of non-gapped clone instances and
the number of gapped clone instances. From the randomly
selected sample of Type 3 clone groups, our technique using
Simian or CCFinder detects more Type 3 non-gapped clones
than Type 3 gapped clones. Figure 5 shows an example of a
non-gapped Type 3 clone detected by our technique. The two
clone instances use different control structures to achieve the
same functionality. Figure 5 shows the corresponding Jimple
code for each Java code. Since their Jimple code normalizes
the differences in the types of loop statements used, this
Type 3 non-gapped clone is detected by our technique.

TABLE XIII
SAMPLED NUMBER OF NON-GAPPED AND GAPPED CLONE INSTANCES

S
y
st

em
 Our Technique using

Simian
Our Technique using

CCFinder

#Type
3

Clones

Non-
Gapped

Gapped
#Type

3
Clones

Non-
Gapped

Gapped

EIRC 35 22 13 38 22 16

Spule 40 25 15 38 29 9

Javadoc 49 41 8 47 30 17

D. Threats to Validity

Internal Threats: The Bellon reference corpus was
manually built by Bellon using only 2% of all the clones
suggested by the 6 clone detectors that participated in the
study. Hence, evaluation using the Bellon corpus might not
provide an accurate precision estimate. Moreover, the Bellon
corpus breaks a few gapped clones into separate groups.
Therefore, many gapped clones detected by our technique

Our technique detects a large number of gapped clone

instances (up to 570) in the subject systems that are not

detected by Simian or CCFinder.

There is a maximum of 49.4% correspondence between

clone groups detected from Jimple and Java code when

using Simian. Similarly, there is a maximum of 78.5%

correspondence when using CCFinder.

Our technique is able to detect Type 3 clones due to the

use of Jimple-level clone detection.

are considered spurious clones when using the Bellon corpus
for evaluation. The selection of a subgroup of the entire set
of clone groups to be part of the Bellon corpus presents an
internal threat to the validity of the study.

External Threats: Manual evaluation of the clones is
time consuming. It took us over one week to manually
evaluate the results generated from the three subject systems
using four different settings (i.e., our technique using Simian
and CCFinder and the two standalone tools). In the future,
we plan to investigate the performance of our technique on
larger systems. More systems in the Bellon benchmark are
available for evaluation. However, we did have problems in
running Soot on the eclipse plug-ins due to their hierarchical
folder structure.

Manual evaluation is carried out to validate the actual
precision of the standalone clone detectors and the precision
of our technique. However, this evaluation was done by a
single author and was not verified. Therefore, additional
raters are needed to substantiate the manual evaluation of the
clones. However, prior work shows that determining whether
a code segment is a clone or not is rather subjective and it is
hard to find consensus [13].

V. RELATED WORK

Many studies have been recently directed to the clone
detection problem. Koschke [16] provides a survey of the
clone detection problem. The study covers the classification
of clones, recent research work on cloning and available
clone detectors. Roy and Cordy [20] provide a survey of the
state of the art in clone detection techniques. In this Section,

we compare our work with byte code clone detection and
source code clone detection.

Byte Code Clone Detection
Saebjornsen et al. [22] propose a clone detection

algorithm for disassembled, binary executables. The study
uses exact clone matching, inexact clone matching and
employs hash tables to detect clones. The algorithm is tested
on Windows XP executables and is found to be scalable on
large systems and produces few spurious clones. Baker and
Manber [1, 2, 3, 4] use Siff, Dup and Diff on disassembled
byte code. The study discusses the required pre-processing
and adaptation of the clone detectors to handle Java byte
code. Experiments showed that the approach is effective in
detecting clones from byte code which can be easily mapped
back to source code. Davis [27] uses Java class files to detect
clones by matching segments of p-code (i.e., packed code).

The aforementioned approaches detect clones on byte
code only. The results are not intended to be understood by
developers. Our technique uses Jimple representation,
combines the clones generated from intermediate code and
Java code to improve clone groups generated from Java
source code. By converting clones in intermediate code to
the source code, our technique makes it easier for developers
to interpret the results and improve the code.

Source Code Clone Detection
String based approaches analyze source code as a

sequence of text lines. Two subsets of the input are grouped
as a clone group if they share a pre-defined number of lines
between them. For example, Simian [28] as a string based
clone detector which can detect clones in different
programming languages. Simian is sensitive to alterations in

 Clone Instance 1 Clone Instance 2

Java

Code

for (int j=i; j<len; j++)

 if (Character.isSpaceChar(s.charAt(j))) return(j);

while (s.length()>i && Character.isSpaceChar(s.charAt(i)))

 i++;

Jimple

Code

label1:

 nop; temp$1 = virtualinvoke s.< char charAt(int)>(j);
 temp$2 = staticinvoke < boolean isSpaceChar(char)>(temp$1);

 if temp$2 == 0 goto label3; goto label2; label2: nop; return j

label17:

 nop; temp$89 = virtualinvoke s.< char charAt(int)>(i);
 temp$90= staticinvoke<boolean isSpaceChar(char)>(temp$89);

 if temp$90 == 0 goto label19; goto label18; label18: nop;

Figure 5. An example of a Type 3 non-gapped clone from EIRC detected by our technique

 Clone Instance 1 Clone Instance 2

Ja
v
a

C
o
d

e
String st1= lang.getString("eirc.s17.0"),st2= lang.getString("eirc.s17.1");
getCurrentPanel().printInfo(st1+” ”+st2); break;}

String [] mod= new String [par.length - 2];

for (int i = 0; i < mod.length; i++) {mod[i] = par[i + 2];}

Channel ch= getChannel(par[0]);
ch.setModes(par[1], mod);

String s1= lang.getString("eirc.s12.1"), s2= lang.getString("eirc.s12.2");
getCurrentPanel().printInfo(s1+” ”+s2); break;}

case 324: {

int ct=0; int ctrDelay=ct+1;

String [] mod = new String [par.length - 3];

for (int i = 0; i < mod.length; i++) {mod[i] = par[i + 3];}

Channel ch= getChannel(par[1]);
ch.setModes(par[2], mod);

Ji
m

p
le

C

o
d

e

temp$109=this.<lang>;
st1=virtualinvoke temp$109.<String getString(String)>("eirc17.0");

........

temp$111=virtualinvoke this.<OutputWindow getCurrentPanel()>();
virtualinvoke temp$111.<void printInfo(String)>(st1+” ”+st2);

goto label212;

 label42:

 nop; temp$112 = lengthof par; temp$113 = temp$112 - 2;

 mod = newarray (String)[temp$113]; i = 0;
 label43:

 nop;temp$114=lengthof mod; if i < temp$114 goto label44;

 ………………

temp$565= this.< lang>;
st1=virtualinvoke temp$565.<String getString(String)>("eirc12.1");

........

temp$567=virtualinvoke this.<OutputWindow getCurrentPanel()>();
virtualinvoke temp$567.<void printInfo(String)>(s1+” ”+s2);

goto label212;

 label175:

 nop; temp$568 = lengthof par; temp$569 = temp$568 - 3;

 mod = newarray (String)[temp$569]; i = 0;
label176:

 nop; temp$570 = lengthof mod; if i < temp$570 goto label177;

 ……………….

ct=0; ctrDelay=ct+1; lookupswitch(command){

case 324: goto label175;

Figure 4. An example of a Type 3 gapped clone detected by our technique from EIRC

code format. Few details of the inner workings of Simian and
the used approach have been disclosed. Ducasse et al. [8]
propose a string based technique that normalizes the code to
minimize sensitivity of the detection process to minor
changes in the code. The technique can achieve high recall
and average precision.

CCFinder [12] is a token based clone detector which uses
a lexical analyzer to convert the code into a token sequence
on which rule based transformation is applied. CCFinder can
detect clones on different programming languages. Both
string based and token based clone detectors fail to directly
detect Type 3 clones. Our technique uses the string based
and token based clone detectors to identify Type 3 clones by
applying the clone detectors on intermediate code. Other
techniques have been proposed. For example, Jia et al. [10]
propose the “KClone” technique which uses lexical analysis
on the source code to detect Type 1 and Type 2 clones. Li et
al. [17] propose a clone detection technique that detects Type
3 clones using data mining techniques. Similar to our work,
Clone Miner [30], Deckard [31] and semantic clone detector
[32] can detect gapped and reordered clones. Different from
the aforementioned work, our technique enhances existing
string and token based clone detectors to detect Type 3
clones without extra computational complexity.

VI. CONCLUSION

In this paper, we present a hybrid clone detection
technique. The technique complements string or token-based
clone detectors to detect Type 3 clones by leveraging the
intermediate representation. Using systems from the Bellon
benchmark and through a manual quantitative and qualitative
evaluation, we show that our technique is able to detect Type
3 clones. The recall of our technique is higher than source-
based clone detectors with minimal drop in the precision
using Bellon corpus which has incomplete clone groups. By
analyzing all the clone groups, our technique has slightly
higher precision than the standalone string and token based
clone detectors. In the future, we plan to apply our technique
on larger systems, and evaluate the time performance and
scalability of our technique.

REFERENCES

[1] B. S. Baker, “A Program for Identifying Duplicated Code”,
Computing Science and Statistics, 1992, 24:49-57.

[2] B. S. Baker, “On Finding Duplication and Near-Duplication in Large

Software Systems”, WCRE 1995, pp. 86-95.
[3] B. S. Baker, “Parameterized diff,” ACM-SIAM symposium on

Discrete algorithms, 1999, p.854-855.

[4] B. S. Baker, U. Manber, “Deducing similarities in Java sources from

bytecodes” Usenix Annual Technical Conference, 1998, pp. 179-190.

[5] I. D. Baxter, A. Yahin, L. Moura, M. S. Anna, L. Bier, “Clone
Detection Using Abstract Syntax Trees”, Intl. Conference on

Software Maintenance 1998, Vol. 98, pp. 368-377.
[6] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, E. Merlo,

“Comparison and Evaluation of Clone Detection Tools”, IEEE TSE,

September 2007, 33 (9), pp.577-591.
[7] A. Chou, J. Yang, B. Chelf, S. Hallem, and D.R. Engler, “An

Empirical Study of Operating System Errors,” Symp. Operating

Systems Principles, pp. 73-88, 2001.

[8] S. Ducasse, O. Nierstrasz, M. Rieger, “On the Effectiveness of Clone

Detection by String Matching”, Journal of Software Maintenance and

Evolution: Research and Practice, 2006, 18:37–58.
[9] W. S. Evans, C. W. Fraser, F. Ma, “Clone Detection via Structural

Abstraction”, Software Quality Journal, 2009, Vol. 17, pp. 309-330.

[10] Y. Jia, D. Binkley, M. Harman, J. Krinke, M. Matsushita, “KClone: A

Proposed Approach to Fast Precise Code Clone Detection”, Intl.
Workshop on Software Clones, 2009

[11] J. Johnson. “Substring Matching for Clone Detection and Change

Tracking,” ICSM, September 1994, pp. 120-126.
[12] T. Kamiya, S. Kusumoto, K. Inoue, “CCFinder: A Multilinguistic

Token based Code Clone Detection System for Large Scale Source

Code”, TSE, July 2002, 28 (7), pp. 654-670.
[13] C. J. Kapser, P. Anderson, M. Godfrey, R. Koschke, M. Rieger, F. V.

Rysselberghe, P. Weißgerber, “Subjectivity in Clone Judgement: Can

We Ever Agree?”, Dagstuhl Seminar 06301, 2007.
[14] R. Komondoor, S. Horwitz. “Using Slicing to Identify Duplication in

Source Code,” Intl. Symposium on Static Analysis, July 2001, Vol.

LNCS 2126, pp. 40-56.
[15] R. Koschke, R. Falke, P. Frenzel,“Clone Detection Using Abstract

Syntax Suffix Trees”, WCRE, 2006, pp.253-262.

[16] R. Koschke, “Survey of Research on Software Clones: Duplication,
Redundancy, and Similarity in Software”, Dagstuhl Seminar 06301,

2006.

[17] Z. Li, S. Lu, S. Myagmar, Y. Zhou, “CP-Miner: Finding Copy-Paste
and Related Bugs in Large-Scale Software Code”, TSE, March 2006,

Vol. 32(3): 176-192.

[18] C. Liu, C. Chen, J. Han, P. S. Yu, “GPLAG: Detection of Software
Plagiarism by Program Dependence Graph Analysis” Conf. on

Knowledge Discovery and Data Mining, 2006, pp. 872-881.

[19] E. Merlo, “Using Metrics-Based Spectral Similarity”, Dagstuhl
Seminar Proceedings 06301, 2007.

[20] C. K. Roy, J. R. Cordy, “A Survey on Software Clone Detection

Research”, Queens University, Kingston, ON, Canada, Technical
Report No. 2007-541, 2007.

[21] C. K. Roy, J. R. Cordy, R. Koschke, “Comparison and Evaluation of

Code Clone Detection Techniques and Tools: A Qualitative
Approach”, Science of Computer Programming (2009), 74(7),

Elsevier, 470-495

[22] A. Saebjornsen, J. Willcock, T. Panas, D. Quinlan, Z. Su, “Detecting
Code Clones in Binary Executables”, Int. Symposium on Software

Testing and Analysis, 2009.
[23] Y. Ueda, T. Kamiya, S. Kusumoto, K. Inoue “On Detection of

Gapped Code Clones using Gap Locations”, APSEC, 2002.

[24] R. Vallee-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, V. Sundaresan,
“Soot: a Java Bytecode Optimization Framework”, Center for

Advanced Studies Conference 1999.

[25] CCFinder Website [Online]. Available: http://www.ccfinder.net/, last
accessed in December 2009.

[26] Detection of Software Clones [Online]. Available:

http://www.bauhaus-stuttgart.de/clones/, last accessed in Dec. 2009.
[27] JCD Java Clone Detector homepage, I. Davis [Online]. Available:

http://www.swag.uwaterloo.ca/jcd/, last accessed in December 2009.

[28] Simian homepage [Online]. Available:
http://www.redhillconsulting.com.au/products/simian/, last accessed

in December 2009.

[29] Soot. Available: http://www.sable.mcgill.ca/soot/, last accessed in
December 2009.

[30] H. A. Basit, S. Jarzabek, “Detecting Higher-level Similarity Patterns

in Programs, ESEC and ACM SIGSOFT Symposium on the
Foundations of Software Engineering, 2005

[31] L. Jiang, G. Misherghi, Z. Su, S. Glondu, “DECKARD: Scalable and
Accurate Tree-based Detection of Code Clones”, ICSE 2007.

[32] M. Gabel, L. Jiang, Z. Su, “Scalable Detection of Semantic Clones”,

ICSE 2008.

http://www.ccfinder.net/
http://www.bauhaus-stuttgart.de/clones/
http://www.swag.uwaterloo.ca/jcd/
http://www.redhillconsulting.com.au/products/simian/
http://www.sable.mcgill.ca/soot/

