
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Information
Systems School of Information Systems

4-2015

An Empirical Assessment of Bellon's Clone Benchmark An Empirical Assessment of Bellon's Clone Benchmark

Alan CHARPENTIER
University of Bordeaux

Jean-Rémy FALLERI
University of Bordeaux

David LO
Singapore Management University, davidlo@smu.edu.sg

Laurent REVEILLERE
University of Bordeaux

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
CHARPENTIER, Alan; FALLERI, Jean-Rémy; LO, David; and REVEILLERE, Laurent. An Empirical Assessment
of Bellon's Clone Benchmark. (2015). EASE '15: Proceedings of the 19th International Conference on
Evaluation and Assessment in Software Engineering, April 29. 1-10. Research Collection School Of
Information Systems.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3092

This Conference Proceeding Article is brought to you for free and open access by the School of Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Information Systems by an authorized administrator of Institutional Knowledge at
Singapore Management University. For more information, please email library@smu.edu.sg.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/35456474?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3092&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3092&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library@smu.edu.sg

An Empirical Assessment of Bellon’s Clone Benchmark

Alan Charpentier
University of Bordeaux

LaBRI, UMR 5800
F-33400, Talence, France

acharpen@labri.fr

Jean-Rémy Falleri
University of Bordeaux

LaBRI, UMR 5800
F-33400, Talence, France

falleri@labri.fr

David Lo
School of Information Systems

Singapore Management
University

davidlo@smu.edu.sg
Laurent Réveillère
University of Bordeaux

LaBRI, UMR 5800
F-33400, Talence, France

reveillere@labri.fr

ABSTRACT
Context: Clone benchmarks are essential to the assessment
and improvement of clone detection tools and algorithms.
Among existing benchmarks, Bellon’s benchmark is widely
used by the research community. However, a serious threat
to the validity of this benchmark is that reference clones
it contains have been manually validated by Bellon alone.
Other persons may disagree with Bellon’s judgment. Ob-
jective: In this paper, we perform an empirical assessment
of Bellon’s benchmark. Method: We seek the opinion of
eighteen participants on a subset of Bellon’s benchmark to
determine if researchers should trust the reference clones it
contains. Results: Our experiment shows that a significant
amount of the reference clones are debatable, and this phe-
nomenon can introduce noise in results obtained using this
benchmark.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement; D.2.8 [Software Engineering]: Metrics

General Terms
Experimentation, Measurement

Keywords
Code clone, Empirical study, Software metrics

1. INTRODUCTION
A clone is a fragment of code that is similar or identical

to another fragment of code in the same piece of software.
Clones arise due to the use of so-called ”copy-paste” devel-
opment, in which a developer creates new code by copying

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
EASE ’15, April 27 - 29, 2015, Nanjing, China
Copyright 2015 ACM 978-1-4503-3350-4/15/04$15.00
http://dx.doi.org/10.1145/2745802.2745821.

existing code that is expected to have a similar intent, and
possibly modifying it slightly according to its new context.
Cloning is a common practice in software systems: several
studies report 5 to 23 percent code duplication in such sys-
tems [1, 2, 13]. Cloning code can complicate code mainte-
nance and evolution, as fault fixes and evolutions must be
propagated from one instance of a clone to the others.

The desirability of identifying, and sometimes eliminating,
clones has led to the development of clone detectors, which
scan a code base for potential clones [7, 8, 9, 14, 20]. One
of the biggest challenges for an effective application of clone
detection in practice is to identify relevant clones for the
user of the tool. However, since clone definition is open
to interpretation, some clones reported by a clone detector
may be viewed as false positives. Identifying false positives
is challenging considering the large amount of data that a
clone analysis of a large system generates.

A traditional approach to reduce the number of false pos-
itives is to enhance the clone detection algorithm and fine-
tune the detection tool. Several benchmarks of true clones
have been proposed, enabling tool developers to compare
and assess results of their tools. The construction of these
benchmarks is usually performed by a single person, decid-
ing herself which clone is or not a true positive. As a conse-
quence, one could ask to which extent this way of building
benchmarks is effective?

Bellon’s benchmark [3] has emerged as the main bench-
mark to compare and evaluate clone detectors [5, 11, 18, 25].
Bellon built a reference corpus of 4,319 reference clones, by
looking at 2% of all 325,935 clones identified by six clone de-
tectors on eight large C and Java programs. Clone detectors’
results are compared to the reference corpus, and assessed
using the traditional information retrieval measures: preci-
sion and recall.

However, a serious threat to the validity of this reference
corpus is that it has been constructed by only one person,
namely Bellon. Since Bellon is not at all an expert of the
software systems containing the clones, and since clones are
very subjective, it is possible that other persons would have
a different opinion about some of the clones of the reference
corpus. This phenomenon could therefore bias the precision
and recall measures computed using this benchmark.

In this paper, we perform an empirical assessment of the
reference corpus of Bellon. We seek the opinion of eighteen
additional persons on a subset of Bellon’s benchmark. We

investigate the following research questions:
1. Can researchers trust the clones from Bellon’s refer-

ence corpus?
2. Are the effectiveness measures computed using Bellon’s

benchmark reliable?
3. Are there some characteristics of reference clones that

make them more trustable?
Our contributions are as follows:
1. We perform a controlled experiment with nine groups

of two participants. For each group, we randomly se-
lect 120 clones from Bellon’s reference corpus and ask
the two participants if the clones are true clones or not.

2. We analyze if there are clones from the reference cor-
pus for which participants and Bellon have different
opinions.

3. We examine if these reference clones that do not yield
consensus among new raters and Bellon can have an
impact on recall and precision values computed using
the benchmark.

4. We evaluate if some clone characteristics can be asso-
ciated to a higher trust level.

The remainder of this paper is organized as follows. Sec-
tion 2 presents Bellon’s benchmark and our research prob-
lem. Next, we describe our empirical study methodology in
Section 3. Section 4 presents the findings of our controlled
experiment. We describe related work in section 5. We dis-
cuss the threats to the validity of our study in Section 6.
Finally, we conclude and mention future work in Section 7.

2. BACKGROUND
In this section, we present Bellon’s benchmark and the

research problem we explore in this study.

2.1 Bellon Benchmark
Bellon’s benchmark has been constructed by Bellon et

al. [3] as a tool to compare and evaluate clone detectors.
Several researchers have participated to the benchmark con-
struction by applying their own clone detector on the same
programs and providing results to Bellon. We report below
the clone definition used in the article of Bellon et al..

Definition 1. A clone (pair) is a triple (f1, f2, t) where
f1 and f2 are two similar code fragments and t is the asso-
ciated type of similarity (type 1, 2 or 3).

They used the following definition of a code fragment.

Definition 2. A code fragment is a tuple (f, s, e) which
consists of the name of the source file f , the start line s,
and the end line e of the fragment. Both line numbers are
inclusive.

They distinguished three types of similarity:
• Type 1 is an exact copy without modifications (except

for white space and comments).
• Type 2 is a syntactically identical copy; only variable,

type, or function identifiers were changed.
• Type 3 is a copy with further modifications; statements

were changed, added, or removed.
Additionally, Bellon et al. require that clones are pairs

of code fragments that could be replaced by function calls,
meaning that they must be syntactically complete (for in-
stance a code fragment starting in the middle of a method
and finishing in the middle of another one cannot be part

Table 1: Participants of the Bellon study.

Participant Tool Comparison

Brenda S. Baker Dup Token
Ira D. Baxter CloneDR AST
Toshihiro Kamiya CCFinder Token
Jens Krinke Duplix PDG
Ettore Merlo CLAN Function Metrics
Matthias Rieger Duploc Text

of a clone). Also, code fragments of a clone must contain at
least six lines of code.

2.1.1 Benchmark Construction
Six researchers helped Bellon to construct the benchmark.

Each of them applied its own clone detector on eight large
C and Java programs. Table 1 shows the clone detector
used by each researcher and table 2 reports the number of
submitted clones in the eight programs.

Bellon examined 2 percent of all 325,935 submitted clones
and built a reference corpus by retaining only clones he
judged as true positives. Sometimes he modified clones be-
fore inserting them, by extending their code fragments. He
did not know which tool provided the clones he was exam-
ining.

It took 77 hours to classify the clones. Table 2 reports for
each program the number of clones he retained in the ref-
erence corpus. According to Bellon judgment, the reference
corpus contains 4,319 true clones. In the remainder, each
clone identified by a clone detector is called candidate and
each clone of the reference corpus is called reference.

2.1.2 Benchmark Use
Bellon’s benchmark provides a set of true clones — the

reference corpus — to evaluate and compare the results of
clone detectors. The evaluation is a two-step process. First
a mapping between candidate clones, found by a clone de-
tector, and reference clones is produced. Then the recall and
precision effectiveness measures are computed.

Bellon et al. define a methodology, based on the amount
of overlap between a candidate and a reference clone, to es-
tablish mappings from the candidate to the reference clones.
Then, Bellon et al. compute the set DetectedRefs of can-
didate clones having a matching reference clone. Similarly,
they compute the set RejectedCands of candidate clones
having no matching references.

We report below definitions of recall and precision used
by Bellon et al. to evaluate clone detectors. Recall is the
number of clones of the reference corpus of type τ detected
by tool T in program P relative to all clones of the reference
corpus for program P with type τ .

Definition 3.

Recall(P, T, τ) =
|DetectedRefs(P, T, τ)|

|Refs(P, τ)|

Precision is the number of clones of the reference corpus
of type τ detected by tool T in program P relative to all
clones identified for program P by tool T with type τ .

Definition 4.

Precision(P, T, τ) =
|DetectedRefs(P, T, τ)|
|Cands(P, T, τ)|

Table 2: Number of Submitted, examined and reference clones.

Program Submitted clones Examined clones Reference clones Yield (in %)

weltab (C) 13,901 280 252 90.00
cook (C) 27,122 544 402 73.90
snns (C) 66,331 1,329 903 67.95
postgresql (C) 59,114 1,182 555 46.95

netbeans-javadoc (Java) 7,860 159 55 34.59
eclipse-ant (Java) 2,440 51 30 58.82
eclipse-jdtcore (Java) 92,905 1,856 1,345 72.47
j2sdk1.4.0-javax-swing (Java) 56,262 1,127 777 68.94

Total 325,935 6,528 4,319 66.16

Since the number of clones inserted in the reference corpus
for a program is only a small percentage of all submitted
candidates for this program1, the precision calculated with
this definition is a lower bound of the real precision.

Hence Bellon et al. measure also the ratio of rejected
clones as shown in the definition below. In this definition
OracledCands corresponds to the 2 percent of all submitted
clones that Bellon manually examined. Table 2 reports the
number of examined clones in the eight programs.

Definition 5.

Rejected(P, T, τ) =
|RejectedCands(P, T, τ)|
|OracledCands(P, T, τ)|

2.2 Research Questions
As explained in the previous section, recall and precision

measures computed using Bellon’s benchmark strongly de-
pend on the reference corpus. Indeed, in the two formulae
we report above, DetectedRefs is computed from the clones
of the reference corpus. Therefore, the reference corpus is
a critical part in the comparison and evaluation of clone
detectors using Bellon’s benchmark.

However, a threat to the validity of this reference corpus
is that it has been constructed by only one person, namely
Bellon. Other persons could construct a different reference
corpus using the same clone definition. In this respect, Bel-
lon et al. report rightly in their article that their results rely
on the judgment of Bellon [3], hence we wonder whether we
can trust these reference clones. To what extent other per-
sons would agree that the reference clones are indeed true
clones?

In this study, we explore the following research questions
to assess Bellon’s reference corpus:

RQ 1. Can researchers trust the clones from Bellon’s
reference corpus? To answer this research question, we seek
the opinion of eighteen participants on a subset of Bellon’s
reference corpus and evaluate if they all judge the clones as
true clones.

RQ 2. Are the effectiveness measures computed using
Bellon’s benchmark reliable? To answer this question, we
distinguish the clones that yielded a consensus among Bellon
and the new raters from the others, and evaluate the effect
it could have on precision and recall measures.

RQ 3. Are there some characteristics of reference clones
that make them more trustable? To answer this question,
we further investigate if there exists certain kinds of clones

1One can see this difference for each program in the last
column of table 2.

which are always evaluated as true clones by Bellon and the
new raters.

3. EXPERIMENTAL SETUP
We describe in this section the experiment we conduct

to assess Bellon’s benchmark. We assume that a reference
clone can be trusted if anyone that is presented the clone
won’t doubt that it is a true clone. Therefore we present
a subset of the reference clones from Bellon’s benchmark to
additional persons and gather their opinions on the clones.
In the remainder of the section, we describe the participants
of this study, how we selected a subset of Bellon’s reference
clones, how we gather the opinion of the participants and
how we affect a trust level to the clones. All data used and
collected during this study is available online2.

3.1 Participants
We ask 18 students to examine the reference clones. Four

are graduate students and fourteen are undergraduate stu-
dents. Three graduate students come from the Singapore
Management University, and 1 from the University of Bor-
deaux. The fourteen undergraduate students come from the
Telecommunication’s department of the Polytechnic Insti-
tute of Bordeaux. They are in the last year of their degree.
All students have an IT background and have been trained
in Java and C programming languages.

3.2 Clone Selection and Examination
We perform an informal experiment using a member of

our research group to estimate how many clones provide to
each participant. We find that 120 clones can be examined
in two hours, without having to hurry and without being to
tired or bored of the experiment.

In this experiment, we want to assess if multiple persons
have the same opinion on the reference clones, therefore we
need to have at least two opinions on each reference clone.
Hence we randomly selected 1, 080 clones (18 × 120 ÷ 2)
from the 4, 319 clones of Bellon’s reference corpus. Thus,
the participants evaluate approximately 25% of the reference
clones. The 1, 080 clones are then randomly split in nine
groups of 120 clones, and each group is examined by a pair
of two randomly drawn students.

Undergraduate students make the experiment in a room of
the Polytechnic Institute of Bordeaux. We consecrate a time
slot of 3 hours to ensure they can rate all the clones. Two
authors of the paper supervise the session and guarantee

2www.labri.fr/perso/acharpen/ease15/study.zip

students do not communicate with each other. Conversely
graduate students make the experiment on the web. We
inform them through mails to perform the experiment in 3
hours and to not communicate with each other during this
time.

3.3 Opinion Collection
In this study, we ask participants to rate a group of refer-

ence clones and then to answer anonymously a questionnaire
about the clones they examined. A key step of our experi-
ment consists of asking participants to rate the clones. For
that purpose, we design a web site to perform an online sur-
vey. For each clone, the participant is asked to rate yes for
clones she deems as true clones and no for false clones. The
answers are collected through the web interface shown in
Figure 1.

For each clone, the web interface displays the two files
involved in the clone, and highlights in yellow the code frag-
ments belonging to the clone in each file. Differences be-
tween both fragments are shown in orange. The web inter-
face is able to save and restore the work session, and to go
back and forward in the set of rated clones so as to update
the answer.

We conduct a controlled experiment with the students. At
the beginning of the clones classification session, we describe
the clone definition used by Bellon et al. and indicate to the
students that they can refer to it during the rating session.
However we do not tell the students that the clones they
are rating were judged as true clones by Bellon. Instead
we tell them that they are random clones detected using
a clone detector. Then we explain in details how to use
the web interface. At the end, we provide a questionnaire
to all students to retrieve their feelings on the experiment.
Every student went through the 120 clones and answered the
questionnaire. As a result, we obtain a set of 1, 080 clones
with three judgments.

3.4 Trust Level of Clones
After having gathered all the answers of the participants,

we have a set of 1, 080 clones with 3 opinions each. The
first opinion is a positive opinion from Bellon, and the two
others have been given by the participants of the experiment
and can be positive or negative. Using these three opinions,
we affect a trust level to each clone. A clone with three
positive opinions has a good trust level. A clone with two
positive opinions has a fair trust level, because it has more
positive than negative opinions. Finally, a clone with only
one positive opinion has a small confidence level as it has
more negative than positive opinions. These three values
define the following ordinal scale: small < fair < good.

4. RESULTS AND DISCUSSION
In this section, we first present the results answering each

of our research questions. Secondly, we provide a discussion
about the feelings of participants of the experiment.

4.1 RQ1: Trust Level of Reference Clones
Our first objective is to investigate the trust level of clones

from Bellon’s reference corpus. Figure 2 shows the number
of clones having a small , fair and good trust level as com-
puted for each of the nine groups of participants. As we can
see, apart from group 1, 4 and 8, the groups seem to have a
fairly similar ratio of clones with a given trust level.

0

20

40

60

80

100

120

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 9

N
um

be
r

of
 c

lo
ne

s

Good Fair Small

Figure 2: Trust level of clones according to Bellon and stu-
dents of each group.

Table 3: 95% confidence intervals of the proportions of
clones with small , fair and good trust level.

Confidence interval

Trust level Lower bound Higher bound

Small 0.10 0.14
Fair 0.34 0.40

Good 0.48 0.54

The first observation is that most of the groups have more
than 50% of clones with a trust level lesser than good , which
is a significant proportion. Concretely, it means that about
only half of the reference clones of Bellon have a good trust
level. The second observation is that, apart from groups 3,
4 and 5, there are between 10 and 20 % of clones with only
a small trust level, which is also a significant number.

As an example, we provide in Figure 3 a clone having
a good trust level, that is a clone judge as true positive
by two participants and in Figure 4 a clone having a small
trust level, that is a clone judge as true negative by two
participants.

To estimate the proportion of clones with small , fair and
good trust level in Bellon’s reference corpus, we use boot-
strapping [6] on our sample of 1, 080 clones. We compute
the 95% confidence intervals for these ratios using 5, 000
replicates. The results are shown in Table 3. As we can see,
there is between 48 and 54% of the reference clones with a
good trust level (about the half). There is between 34 and
40% of the reference clones with a fair trust level, and be-
tween 10 and 14% of the reference clones with a small trust
level.

There is a significant number of reference clones that
are debatable. About half of the clones have less than
a good trust level. Between ten to fifteen percent of the
clones have only a small trust level.

4.2 RQ2: Trust Level and Effectiveness Mea-
sures

Since we have a set of clones rated by three persons, we
can examine two scenarios. Firstly, a clone is considered as
a reference if it has at least a fair trust level. Secondly, a
clone is considered as a reference only if it has a good trust

[yellow] The two code
fragments identified as a
clone by a clone detector

[orange] Lines that
appear in a fragment
but not in the other

Figure 1: Web interface to gather answers about the clones.

Listing (1) src/ant/taskdefs/compilers/Jikes.java

119 if (debug) {
120 cmd.createArgument().setValue("-g"); }
121 if (optimize) {
122 cmd.createArgument().setValue("-O"); }
123 if (verbose) {
124 cmd.createArgument().setValue("-verbose"); }

Listing (2) src/ant/taskdefs/compilers/Jvc.java

105 if (debug) {
106 cmd.createArgument().setValue("/g"); }
107 if (optimize) {
108 cmd.createArgument().setValue("/O"); }
109 if (verbose) {
110 cmd.createArgument().setValue("/verbose"); }

Figure 3: A clone detected in eclipse-ant having a good trust level.

Listing (3) src/backend/nodes/copyfuncs.c

1170 static ResTarget *
1171 _copyResTarget(ResTarget *from) {
1172 ResTarget *newnode = makeNode(ResTarget);
1173 if (from->name)
1174 newnode->name = pstrdup(from->name);
1175 Node_Copy(from, newnode, indirection);
1176 Node_Copy(from, newnode, val);
1177 return newnode; }

Listing (4) src/backend/nodes/copyfuncs.c

1707 static AlterGroupStmt *
1708 _copyAlterGroupStmt(AlterGroupStmt *from) {
1709 AlterGroupStmt *newnode = makeNode(AlterGroupStmt);
1710 if (from->name)
1711 newnode->name = pstrdup(from->name);
1712 newnode->action = from->action;
1713 Node_Copy(from, newnode, listUsers);
1714 return newnode; }

Figure 4: A clone detected in postgresql having a small trust level.

Table 4: Impact on recall and precision of trust level of
Bellon’s reference clones.

t detects exactly Precision and recall
clones of derived from

B F G

B p = 0.88 p = 0.51

F r = 0.88

G r = 0.51

level. In any case, we consider that clones with only a small
trust level are not likely to be reference clones.

As a consequence, we build two new reference corpora: the
reference corpus F of clones having at least a fair trust level,
and the reference corpus G of clones having a good trust
level. According to the students’ answers, F contains 954
clones and G contains 553 clones. Additionally, B represents
the set of all clones from Bellon’s reference corpus examined
by the participants. By construction, we have G ⊂ F ⊂ B.

To assess if the trust level of Bellon’s reference clones can
modify the precision and recall values, we use a worst-case
approach. The principle is simple, we assume that a fictive
tool t finds exactly the clones of Bellon’s reference corpus.
It has therefore a precision and recall of 1. Then we assume
that in fact the reference corpus should be F or G (because
we want to take the trust level into account), and we com-
pute the decrease of precision in both scenarios (since F and
G are subsets of B, recall will not change). Conversely, we
assume that t finds exactly the clones of F or G. Therefore
it has a precision and recall of 1. Then we assume that in
fact the reference corpus should be B, and we compute the
decrease of recall (since F and G are subsets of B, precision
will not change).

Table 4 reports the results of our approach and can be
interpreted as follows. If a clone detection tool identifies
exactly the clones of Bellon’s reference corpus, its recall and
precision are no longer equals to 1 but either 0.88 or 0.51,
depending if we use respectively clones with at least fair
or good trust level. The precision and recall decrease are
therefore 0.12 or 0.49 respectively.

Precision and recall can be significantly modified by
the trust level of reference clones. When requiring a
good trust level, a precision and recall decrease of up to
0.49 is possible. When requiring only a fair trust level,
a precision and recall decrease of up to 0.12 is possi-
ble. Therefore, results from tools comparison within
this range of these differences have to be interpreted
with caution.

4.3 RQ3: Trust Level and Clone Characteris-
tics

In research question 3, we investigate if there exists certain
kinds of clones for which it is more likely to have a good trust
level. We study three characteristics of the clones: Type,
Size and Language. Clone types are defined in section 2.
The size of a clone is the sum of the number of lines of its
two code fragments. Finally, Language is the programming
language of the program in which a clone has been identified.
Programs from Bellon’s benchmark are programmed using

C or Java, as reported in table 2.
The percentages of clones having a given Type, Size and

Language are shown in figures 5, 6 and 7 respectively. In
these figures, the first column represents the 4, 319 clones
of Bellon’s reference corpus. Then, each group represents a
set of 120 clones selected from this reference corpus. The
ratio of clones for each characteristic in the nine groups is
fairly similar to the ratios in Bellon’s reference corpus. One
can see that most of the clones have a size lower than 50
lines. Only a few clones have a very big size, that is several
hundreds of lines. Moreover there is a vast majority of type
2 clones in Bellon’s reference corpus.

To answer research question 3, we assess the impact of
these clone characteristics on the trust level as defined in
the previous section.

0%

25%

50%

75%

100%

Bellon

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 9

Type 1 Type 2 Type 3

Figure 5: Ratios of clones with a given type.

10

25

50

100

250

500

1000

Bellon

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 9

C
lo

ne
 s

iz
e

Figure 6: Distribution of clones for size characteristic.

0%

25%

50%

75%

100%

Bellon

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 9

C Java

Figure 7: Ratios of clones with a given programming lan-
guage.

Clone size.
Regarding the association between clone size and trust

level, we formulate the following null and alternative hy-
potheses.

H1
0 : there is no correlation between a clone size and its

trust level.

H1
a: the larger a clone is, the greater its trust level is.

The alternative hypothesis follows the intuition that very
big clones are very likely to be true clones. The trust level
according to the clone size is shown in Figure 8. In this
figure, it seems that clones with a bigger size have a slightly
better trust level.

Small

Fair

Good

0 500 1000 1500 2000

Clone size

T
ru

st
 le

ve
l

Figure 8: Trust level according to the clone size.

As clone size is measured on an interval scale and the trust
level on an ordinal scale, we use a Spearman correlation test.
It results in a significant effect: ρ = 0.06, p = 0.03 (one-
tailed). We use bootstrapping to compute a 95% confidence
interval for Spearman’s ρ, with the following result: 0 ≤ ρ ≤
0.12. Therefore the effect size is very weak. It means that
the clone size and trust level are only very loosely associated.

Clone type.
Regarding the association between clone type and trust

level, we formulate the following null and alternative hy-
potheses.

H2
0 : there is no correlation between a clone type and its

trust level.

H2
a: the bigger the type of a clone is, the lesser its trust

level is.

The trust level according to the clone type is shown in the
three left bars of figure 9. In this figure, its seems that the
type of a clone is associated to its trust level.

Small

Fair

Good

Type 1 Type 2 Type 3 C Java

Clone characteristics

T
ru

st
 le

ve
l

Figure 9: Trust level according to clone type and program-
ming language.

We consider that a clone type is measured on the following
interval scale type 1 ≤ type 2 ≤ type 3. This ordinal scale
makes sense because when the type of a clone increase, its
definition becomes less restrictive, as explained in Section 2.
The alternative hypothesis follows the intuition that clones
of identical code fragments have a higher trust level than
other clones.

As both variables (type and trust level) are measured on
an ordinal scale, we use a Spearman correlation test. It
results in a significant effect: ρ = −0.26, p = 0 (one-tailed).
We use bootstrapping to compute a 95% confidence interval
for Spearman’s ρ, with the following result: −0.31 ≤ ρ ≤
−0.21. Therefore the effect size is moderate and negative.
It means that, as we postulated, the more the two code
fragments of a clone are similar, the bigger its trust level is.
On figure 9 we can see that clones with type 1 have at worse
a fair trust level, and have very often a good trust level.

Programming language.
Regarding the association between programming language

of a clone and trust level, we formulate the following null and
alternative hypotheses.

H3
0 : the programming language has no impact on the trust

level.

H3
a: the programming language has an impact on the trust

level.

We have no particular intuition about the direction of
the effect of the association between programming language
and trust level since our participants are trained in both
languages. The two right bars of figure 9 show the trust
level according to the language. Java clones seem to have a
slightly better trust level than C clones.

As we have two groups of clones (C and Java) and a
variable measured on an ordinal scale, we use the Mann-
Whitney U test. It results in a significant difference W =
133672.5, p = 0.008709 (two-tailed). We calculate Cliff’s
delta [4] to evaluate the effect size. Cliff’s delta, namely
d, measures the amount of difference between two variables
and ranges between 1 and −1. Effect size is interpreted us-
ing the thresholds provided by Romano et al. [19], that is if
d < 0.147 effect is ”negligible”, d < 0.33 ”small”, d < 0.474
”medium” and otherwise ”large”. We find d = −0.08. The
confidence interval is −0.14 ≤ d ≤ −0.02. The effect is
therefore negligible.

The only characteristic that has a significant effect
size on the association to the trust level is the clone
type. Moreover, only type 1 clones can be considered
as having a good trust level as soon as they have a pos-
itive opinion from a rater. Other clones require more
opinions.

4.4 Questionnaire
In this section, we summarize and discuss results of the

questionnaire answered anonymously by the participants.
1. Did you know code clones before this survey? Half of

students knew the concept of clones before the exper-
iment.

2. Did you know this clone definition? 17% of students
knew the clone definition used by Bellon et al. [3].

3. Was the clone definition precise enough? 72% of stu-
dents found the definition precise enough.

The first two questions provide information about the
background of students participating in our study. Question
3 reveals that a majority of students did not have trouble
with the clone definition.

5. RELATED WORK
In this section, we present existing work related to our

study. First we report several articles using or assessing
Bellon’s benchmark. Then we present some studies provid-
ing clone benchmarks and others dealing with the problem
of raters subjectivity on clones.

5.1 Bellon Benchmark in the Literature
Bellon’s benchmark has been widely used by the research

community. Some studies have used it, some studies have
used a subset of it and some studies have extended it. In this
section, we present several papers corresponding to these
three use cases of Bellon’s benchmark.

Ducasse et al. [5] present a lightweight string-based ap-
proach to identify duplicated source code. They compare
their approach to those of Baker [1] and Kamiya[9], which
are present in Bellon’s benchmark. They use the clones of
Bellon’s reference corpus to measure recall values of tools
they evaluate. They find that their clone detection technique
generally achieves high recall and acceptable precision.

Murakami et al. [16] propose a token-based clone detection
method. They develop a tool, namely FRISC, implement-
ing this approach. They use Bellon’s benchmark as a set of
real clones to evaluate FRISC. They find that FRISC de-
tects more real clones than any other tools used in Bellon’s
benchmark.

Nguyen et al. [18] propose JSync, a clone management
tool. They conduct empirical experiments on Bellon’s bench-
mark. Because the reference corpus contains only 2% of the
325,935 submitted candidates, they use it only for compar-
ing the recall among tools but not measuring the absolute
recall of each individual tool.

Wang et al. [25] investigate the problem of the choice of
clone detectors configuration. They introduce an approach
to automatically find configurations for clone detectors max-
imizing a given criterion. They evaluate their approach with
a large-scale empirical study based on Bellon’s benchmark.

Selim et al. [21] present a hybrid clone detection technique
based on source code transformation. They study the per-
formance of their technique using Bellon’s benchmark. They
manually classify all clones produced by tools that are not
present in Bellon’s benchmark. It takes the authors over 8
days to perform the manual evaluation.

Koschke et al. [11] introduce a suffix tree based approach.
They compare their technique to other techniques using Bel-
lon’s benchmark. Because some tools of their study are not
present in Bellon’s benchmark, they extend Bellon’s refer-
ence corpus.

Murakami et al. [17] study clones where there exists a gap
between the original code fragment and pasted fragments.
They propose a method to detect these gapped clones, im-
plement it as a software tool named CDSW, and evaluate
it with Bellon’s benchmark. They add locational informa-
tion of gapped lines to each clone of Bellon’s reference cor-
pus. They calculate recall, precision and f-measure by using
clones with and without gaps information. They find that
information about where gaps are improve the accuracy of
clone detection results. This extension of Bellon’s bench-
mark is further detailed in another paper [15].

5.2 Assessment of Bellon’s Benchmark
Svajlenko and Roy [23] conduct a study on the perfor-

mance of modern clone detection tools. They evaluate and

compare the recall of eleven modern clone detection tools
(CCFinderX, ConQat, CPD, CtCompare, Deckard, Duplo,
IClones, NiCad, Scorpio, SimCad and Simian) using four
benchmark frameworks, including different variants of Bel-
lon’s benchmark. They formulate expectations for each tool
and then check for agreement among these expectations and
results of each benchmark. They suggest that Bellon’s bench-
mark may not be accurate for modern tools. They conclude
that is important to update Bellon’s benchmark with clones
detected by modern clone detection tools.

5.3 Clone Benchmarks
Krutz and Le build a set of method level clones to help

the evaluation of clone detection tools [12]. They ask seven
persons including four students and three experts in clone
research to oracle 1,536 function pairs randomly selected
from three open source programs: Apache, Python and Post-
greSQL. Since they use several judges to decide whether or
not a function pair is a clone, their validation process is more
rigorous than the one used by Bellon et al. [3].

Svajlenko et al. propose a benchmark of clones [22] in
a big data inter-project Java repository, called IJaDataset.
This benchmark is built independently of clone detection
tools. Hence it is not limited to the clones that tools are
able to identify. First they use a search heuristic to find
snippets that might implement a given functionality. Then
they ask judges to manually check if these snippets are true
or false positives. Their benchmark contains clone pairs of
ten specific functionalities.

5.4 Developers Judgments on Clones
Kapser et al. [10] perform a study to assess agreement

among clone experts when classifying potential clones as true
or false positives. Authors use CCFinder [9] to select 20
candidate clones from the Postgresql source code. They find
that only 50% of candidate clones are classified in the same
way by more than 80% of the experts.

Yang et al. propose an automatic classification of code
clones [26]. In their study, they ask four students to rate
a sample of clone candidates and use the answers as input
of a machine learning algorithm to perform an automatic
classification on the original set of clones, thus reducing the
number of clone candidates to manually investigate. How-
ever, raters must always have an opinion about a clone (yes
or no) which is not obvious.

Walenstein et al. use the corpus provided by Bellon to in-
vestigate the level of agreement among raters [24]. They con-
clude that agreement among raters strongly depends on the
projects being studied and on the question asked to raters.

6. THREATS TO VALIDITY
We have identified the following threats to validity to our

study.

6.1 Construct Validity
The main threat to construct validity is related to the

process of selecting clones from each group of participants,
from which we do random sampling. Providing other clones
to participants could have produced different results. How-
ever, as seen in section 4, the clone characteristics in each
group are distributed similarly. Therefore we think that this
threat has a low impact.

6.2 Internal Validity
We randomly created groups of students without consid-

ering their expertise on clones. It is possible the groups were
not balanced. Trust level as computed from the answers of
the two students of a group would have been different if we
had created other groups. However, as seen in section 4, the
trust level of clones is distributed similarly in each group.
Therefore we think that this threat has a low impact.

6.3 External Validity
Our study bears two main threats to external validity.

First, the participants, as Bellon, are students and thus their
judgments could not match developers’ judgments. How-
ever, they all have an IT background and have been trained
in Java and C programming languages. Furthermore, their
participation to the experiment was not mandatory.

Second, the participants only rate a subset of Bellon’s
benchmark. Therefore results on the whole benchmark could
be different. Nevertheless the clones seen by the participants
have been randomly selected.

7. CONCLUSION AND FUTURE WORK
In this article, we perform an empirical assessment of Bel-

lon’s benchmark. We seek the opinion of eighteen persons
on a subset of Bellon’s reference corpus, and explore three
research questions. First we show that there is a significant
number of reference clones that are debatable: a majority
of the clones rated by the participants has less than a good
trust level. Second we find out that precision and recall
can be significantly modified by the trust level of reference
clones. This phenomenon can introduce noise in results ob-
tained using Bellon’s benchmark. Results derived from this
benchmark have to be interpreted with caution. Last we
show that among the three clone characteristics we evalu-
ate, only the type is associated to the trust level. Only type
1 clones can be considered as having a good trust level as
soon as they have a positive opinion from a rater.

The lesson we can draw from this experiment is that a
clone benchmark must not be built by only one person. In
future work, we will investigate how to make easier the con-
struction of clone benchmarks. First we will assess whether
program expertise helps to build clone benchmarks. In other
words, we will assess whether clone benchmarks have to be
done in collaboration with experts of programs in which
clones are identified. Second we will investigate whether
providing a more precise clone definition to raters helps to
categorize clones. One way to clarify this definition is to
specify clone purpose. There are mainly two clone purposes
to consider: refactoring and co-evolution. We will assess
whether providing this information to raters makes the con-
struction of clone benchmarks easier, and whether reference
clones selected in such way have higher trust. Finally we
plan to use our findings to build high quality clone bench-
marks.

8. ACKNOWLEDGMENTS
The authors would like to thanks all the students partic-

ipating in this experiment. They also would like to thanks
Matthieu Foucault for his comments on the paper.

9. REFERENCES
[1] B. S. Baker. On finding duplication and

near-duplication in large software systems. In

Proceedings of the Second Working Conference on
Reverse Engineering, WCRE ’95, pages 86–,
Washington, DC, USA, 1995. IEEE Computer Society.

[2] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and
L. Bier. Clone detection using abstract syntax trees.
In Proceedings of the International Conference on
Software Maintenance, ICSM ’98, pages 368–,
Washington, DC, USA, 1998. IEEE Computer Society.

[3] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and
E. Merlo. Comparison and evaluation of clone
detection tools. Software Engineering, IEEE
Transactions on, 33(9):577–591, Sept 2007.

[4] N. Cliff. Ordinal methods for behavioral data analysis.
Psychology Press, New-York, USA, Sept. 1996.

[5] S. Ducasse, O. Nierstrasz, and M. Rieger. On the
effectiveness of clone detection by string matching:
Research articles. J. Softw. Maint. Evol., 18(1):37–58,
Jan. 2006.

[6] B. Efron. Bootstrap methods: another look at the
jackknife. The annals of Statistics, pages 1–26, 1979.

[7] N. Göde and R. Koschke. Incremental clone detection.
In Proceedings of the 2009 European Conference on
Software Maintenance and Reengineering, CSMR ’09,
pages 219–228, Washington, DC, USA, 2009. IEEE
Computer Society.

[8] L. Jiang, G. Misherghi, Z. Su, and S. Glondu.
Deckard: Scalable and accurate tree-based detection of
code clones. In Proceedings of the 29th International
Conference on Software Engineering, ICSE ’07, pages
96–105, Washington, DC, USA, 2007. IEEE Computer
Society.

[9] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: A
multilinguistic token-based code clone detection
system for large scale source code. IEEE Trans. Softw.
Eng., 28(7):654–670, July 2002.

[10] C. Kapser, P. Anderson, M. Godfrey, R. Koschke,
M. Rieger, F. van Rysselberghe, and P. Weïsgerber.
Subjectivity in clone judgment: Can we ever agree? In
R. Koschke, E. Merlo, and A. Walenstein, editors,
Duplication, Redundancy, and Similarity in Software,
number 06301 in Dagstuhl Seminar Proceedings,
Dagstuhl, Germany, 2007. Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), Schloss
Dagstuhl, Germany.

[11] R. Koschke, R. Falke, and P. Frenzel. Clone detection
using abstract syntax suffix trees. In Proceedings of
the 13th Working Conference on Reverse Engineering,
WCRE ’06, pages 253–262, Washington, DC, USA,
2006. IEEE Computer Society.

[12] D. E. Krutz and W. Le. A code clone oracle. In
Proceedings of the 11th Working Conference on
Mining Software Repositories, MSR 2014, pages
388–391, New York, NY, USA, 2014. ACM.

[13] B. Lague, D. Proulx, J. Mayrand, E. M. Merlo, and
J. Hudepohl. Assessing the benefits of incorporating
function clone detection in a development process. In
Proceedings of the International Conference on
Software Maintenance, ICSM ’97, pages 314–,
Washington, DC, USA, 1997. IEEE Computer Society.

[14] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner:
Finding copy-paste and related bugs in large-scale

software code. IEEE Trans. Softw. Eng.,
32(3):176–192, Mar. 2006.

[15] H. Murakami, Y. Higo, and S. Kusumoto. A dataset of
clone references with gaps. In Proceedings of the 11th
Working Conference on Mining Software Repositories,
MSR 2014, pages 412–415, New York, NY, USA, 2014.
ACM.

[16] H. Murakami, K. Hotta, Y. Higo, H. Igaki, and
S. Kusumoto. Folding repeated instructions for
improving token-based code clone detection. In
Proceedings of the 2012 IEEE 12th International
Working Conference on Source Code Analysis and
Manipulation, SCAM ’12, pages 64–73, Washington,
DC, USA, 2012. IEEE Computer Society.

[17] H. Murakami, K. Hotta, Y. Higo, H. Igaki, and
S. Kusumoto. Gapped code clone detection with
lightweight source code analysis. In Program
Comprehension (ICPC), 2013 IEEE 21st
International Conference on, pages 93–102, May 2013.

[18] H. A. Nguyen, T. T. Nguyen, N. H. Pham,
J. Al-Kofahi, and T. N. Nguyen. Clone management
for evolving software. IEEE Transactions on Software
Engineering, 38(5):1008–1026, 2012.

[19] J. Romano, J. Kromrey, J. Coraggio, and
J. Skowronek. Appropriate statistics for ordinal level
data: Should we really be using t-test and cohen’sd for
evaluating group differences on the nsse and other
surveys? In annual meeting of the Florida Association
of Institutional Research, pages 1–3, 2006.

[20] C. K. Roy and J. R. Cordy. Nicad: Accurate detection
of near-miss intentional clones using flexible
pretty-printing and code normalization. In Proceedings

of the 2008 The 16th IEEE International Conference
on Program Comprehension, ICPC ’08, pages 172–181,
Washington, DC, USA, 2008. IEEE Computer Society.

[21] G. Selim, K. Foo, and Y. Zou. Enhancing source-based
clone detection using intermediate representation. In
Reverse Engineering (WCRE), 2010 17th Working
Conference on, pages 227–236, Oct 2010.

[22] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and
M. M. Mia. Towards a big data curated benchmark of
inter-project code clones. In 30th IEEE International
Conference on Software Maintenance and Evolution,
Victoria, BC, Canada, September 29 - October 3,
2014, pages 476–480, 2014.

[23] J. Svajlenko and C. K. Roy. Evaluating modern clone
detection tools. Proc. ICSME, 2014.

[24] A. Walenstein, N. Jyoti, J. Li, Y. Yang, and
A. Lakhotia. Problems creating task-relevant clone
detection reference data. In Proceedings of the 10th
Working Conference on Reverse Engineering, WCRE
’03, pages 285–, Washington, DC, USA, 2003. IEEE
Computer Society.

[25] T. Wang, M. Harman, Y. Jia, and J. Krinke.
Searching for better configurations: A rigorous
approach to clone evaluation. In Proceedings of the
2013 9th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2013, pages 455–465, New
York, NY, USA, 2013. ACM.

[26] J. Yang, K. Hotta, Y. Higo, H. Igaki, and
S. Kusumoto. Classification model for code clones
based on machine learning. Empirical Software
Engineering, pages 1–31, 2014.

	An Empirical Assessment of Bellon's Clone Benchmark
	Citation

	tmp.1582699646.pdf.OGN9X

