594 research outputs found

    Evolving to the Future: Unseen Event Adaptive Fake News Detection on Social Media

    Full text link
    With the rapid development of social media, the wide dissemination of fake news on social media is increasingly threatening both individuals and society. In the dynamic landscape of social media, fake news detection aims to develop a model trained on news reporting past events. The objective is to predict and identify fake news about future events, which often relate to subjects entirely different from those in the past. However, existing fake detection methods exhibit a lack of robustness and cannot generalize to unseen events. To address this, we introduce Future ADaptive Event-based Fake news Detection (FADE) framework. Specifically, we train a target predictor through an adaptive augmentation strategy and graph contrastive learning to make more robust overall predictions. Simultaneously, we independently train an event-only predictor to obtain biased predictions. Then we further mitigate event bias by obtaining the final prediction by subtracting the output of the event-only predictor from the output of the target predictor. Encouraging results from experiments designed to emulate real-world social media conditions validate the effectiveness of our method in comparison to existing state-of-the-art approaches

    Predicting Viral Rumors and Vulnerable Users for Infodemic Surveillance

    Full text link
    In the age of the infodemic, it is crucial to have tools for effectively monitoring the spread of rampant rumors that can quickly go viral, as well as identifying vulnerable users who may be more susceptible to spreading such misinformation. This proactive approach allows for timely preventive measures to be taken, mitigating the negative impact of false information on society. We propose a novel approach to predict viral rumors and vulnerable users using a unified graph neural network model. We pre-train network-based user embeddings and leverage a cross-attention mechanism between users and posts, together with a community-enhanced vulnerability propagation (CVP) method to improve user and propagation graph representations. Furthermore, we employ two multi-task training strategies to mitigate negative transfer effects among tasks in different settings, enhancing the overall performance of our approach. We also construct two datasets with ground-truth annotations on information virality and user vulnerability in rumor and non-rumor events, which are automatically derived from existing rumor detection datasets. Extensive evaluation results of our joint learning model confirm its superiority over strong baselines in all three tasks: rumor detection, virality prediction, and user vulnerability scoring. For instance, compared to the best baselines based on the Weibo dataset, our model makes 3.8\% and 3.0\% improvements on Accuracy and MacF1 for rumor detection, and reduces mean squared error (MSE) by 23.9\% and 16.5\% for virality prediction and user vulnerability scoring, respectively. Our findings suggest that our approach effectively captures the correlation between rumor virality and user vulnerability, leveraging this information to improve prediction performance and provide a valuable tool for infodemic surveillance.Comment: Accepted by IP&

    Detecting the Influence of Spreading in Social Networks with Excitable Sensor Networks

    Full text link
    Detecting spreading outbreaks in social networks with sensors is of great significance in applications. Inspired by the formation mechanism of human's physical sensations to external stimuli, we propose a new method to detect the influence of spreading by constructing excitable sensor networks. Exploiting the amplifying effect of excitable sensor networks, our method can better detect small-scale spreading processes. At the same time, it can also distinguish large-scale diffusion instances due to the self-inhibition effect of excitable elements. Through simulations of diverse spreading dynamics on typical real-world social networks (facebook, coauthor and email social networks), we find that the excitable senor networks are capable of detecting and ranking spreading processes in a much wider range of influence than other commonly used sensor placement methods, such as random, targeted, acquaintance and distance strategies. In addition, we validate the efficacy of our method with diffusion data from a real-world online social system, Twitter. We find that our method can detect more spreading topics in practice. Our approach provides a new direction in spreading detection and should be useful for designing effective detection methods

    Probing Spurious Correlations in Popular Event-Based Rumor Detection Benchmarks

    Full text link
    As social media becomes a hotbed for the spread of misinformation, the crucial task of rumor detection has witnessed promising advances fostered by open-source benchmark datasets. Despite being widely used, we find that these datasets suffer from spurious correlations, which are ignored by existing studies and lead to severe overestimation of existing rumor detection performance. The spurious correlations stem from three causes: (1) event-based data collection and labeling schemes assign the same veracity label to multiple highly similar posts from the same underlying event; (2) merging multiple data sources spuriously relates source identities to veracity labels; and (3) labeling bias. In this paper, we closely investigate three of the most popular rumor detection benchmark datasets (i.e., Twitter15, Twitter16 and PHEME), and propose event-separated rumor detection as a solution to eliminate spurious cues. Under the event-separated setting, we observe that the accuracy of existing state-of-the-art models drops significantly by over 40%, becoming only comparable to a simple neural classifier. To better address this task, we propose Publisher Style Aggregation (PSA), a generalizable approach that aggregates publisher posting records to learn writing style and veracity stance. Extensive experiments demonstrate that our method outperforms existing baselines in terms of effectiveness, efficiency and generalizability.Comment: Accepted to ECML-PKDD 202

    Temporal models for mining, ranking and recommendation in the Web

    Get PDF
    Due to their first-hand, diverse and evolution-aware reflection of nearly all areas of life, heterogeneous temporal datasets i.e., the Web, collaborative knowledge bases and social networks have been emerged as gold-mines for content analytics of many sorts. In those collections, time plays an essential role in many crucial information retrieval and data mining tasks, such as from user intent understanding, document ranking to advanced recommendations. There are two semantically closed and important constituents when modeling along the time dimension, i.e., entity and event. Time is crucially served as the context for changes driven by happenings and phenomena (events) that related to people, organizations or places (so-called entities) in our social lives. Thus, determining what users expect, or in other words, resolving the uncertainty confounded by temporal changes is a compelling task to support consistent user satisfaction. In this thesis, we address the aforementioned issues and propose temporal models that capture the temporal dynamics of such entities and events to serve for the end tasks. Specifically, we make the following contributions in this thesis: (1) Query recommendation and document ranking in the Web - we address the issues for suggesting entity-centric queries and ranking effectiveness surrounding the happening time period of an associated event. In particular, we propose a multi-criteria optimization framework that facilitates the combination of multiple temporal models to smooth out the abrupt changes when transitioning between event phases for the former and a probabilistic approach for search result diversification of temporally ambiguous queries for the latter. (2) Entity relatedness in Wikipedia - we study the long-term dynamics of Wikipedia as a global memory place for high-impact events, specifically the reviving memories of past events. Additionally, we propose a neural network-based approach to measure the temporal relatedness of entities and events. The model engages different latent representations of an entity (i.e., from time, link-based graph and content) and use the collective attention from user navigation as the supervision. (3) Graph-based ranking and temporal anchor-text mining inWeb Archives - we tackle the problem of discovering important documents along the time-span ofWeb Archives, leveraging the link graph. Specifically, we combine the problems of relevance, temporal authority, diversity and time in a unified framework. The model accounts for the incomplete link structure and natural time lagging in Web Archives in mining the temporal authority. (4) Methods for enhancing predictive models at early-stage in social media and clinical domain - we investigate several methods to control model instability and enrich contexts of predictive models at the “cold-start” period. We demonstrate their effectiveness for the rumor detection and blood glucose prediction cases respectively. Overall, the findings presented in this thesis demonstrate the importance of tracking these temporal dynamics surround salient events and entities for IR applications. We show that determining such changes in time-based patterns and trends in prevalent temporal collections can better satisfy user expectations, and boost ranking and recommendation effectiveness over time

    A Unified Contrastive Transfer Framework with Propagation Structure for Boosting Low-Resource Rumor Detection

    Full text link
    The truth is significantly hampered by massive rumors that spread along with breaking news or popular topics. Since there is sufficient corpus gathered from the same domain for model training, existing rumor detection algorithms show promising performance on yesterday's news. However, due to a lack of training data and prior expert knowledge, they are poor at spotting rumors concerning unforeseen events, especially those propagated in different languages (i.e., low-resource regimes). In this paper, we propose a unified contrastive transfer framework to detect rumors by adapting the features learned from well-resourced rumor data to that of the low-resourced. More specifically, we first represent rumor circulated on social media as an undirected topology, and then train a Multi-scale Graph Convolutional Network via a unified contrastive paradigm. Our model explicitly breaks the barriers of the domain and/or language issues, via language alignment and a novel domain-adaptive contrastive learning mechanism. To enhance the representation learning from a small set of target events, we reveal that rumor-indicative signal is closely correlated with the uniformity of the distribution of these events. We design a target-wise contrastive training mechanism with three data augmentation strategies, capable of unifying the representations by distinguishing target events. Extensive experiments conducted on four low-resource datasets collected from real-world microblog platforms demonstrate that our framework achieves much better performance than state-of-the-art methods and exhibits a superior capacity for detecting rumors at early stages.Comment: A significant extension of the first contrastive approach for low-resource rumor detection (arXiv:2204.08143

    Graph Learning for Anomaly Analytics: Algorithms, Applications, and Challenges

    Full text link
    Anomaly analytics is a popular and vital task in various research contexts, which has been studied for several decades. At the same time, deep learning has shown its capacity in solving many graph-based tasks like, node classification, link prediction, and graph classification. Recently, many studies are extending graph learning models for solving anomaly analytics problems, resulting in beneficial advances in graph-based anomaly analytics techniques. In this survey, we provide a comprehensive overview of graph learning methods for anomaly analytics tasks. We classify them into four categories based on their model architectures, namely graph convolutional network (GCN), graph attention network (GAT), graph autoencoder (GAE), and other graph learning models. The differences between these methods are also compared in a systematic manner. Furthermore, we outline several graph-based anomaly analytics applications across various domains in the real world. Finally, we discuss five potential future research directions in this rapidly growing field

    Graph Mining for Cybersecurity: A Survey

    Full text link
    The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society. Securing cyberspace has become an utmost concern for organizations and governments. Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities. In recent years, with the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance. It is imperative to summarize existing graph-based cybersecurity solutions to provide a guide for future studies. Therefore, as a key contribution of this paper, we provide a comprehensive review of graph mining for cybersecurity, including an overview of cybersecurity tasks, the typical graph mining techniques, and the general process of applying them to cybersecurity, as well as various solutions for different cybersecurity tasks. For each task, we probe into relevant methods and highlight the graph types, graph approaches, and task levels in their modeling. Furthermore, we collect open datasets and toolkits for graph-based cybersecurity. Finally, we outlook the potential directions of this field for future research

    Graph learning for anomaly analytics : algorithms, applications, and challenges

    Get PDF
    Anomaly analytics is a popular and vital task in various research contexts that has been studied for several decades. At the same time, deep learning has shown its capacity in solving many graph-based tasks, like node classification, link prediction, and graph classification. Recently, many studies are extending graph learning models for solving anomaly analytics problems, resulting in beneficial advances in graph-based anomaly analytics techniques. In this survey, we provide a comprehensive overview of graph learning methods for anomaly analytics tasks. We classify them into four categories based on their model architectures, namely graph convolutional network, graph attention network, graph autoencoder, and other graph learning models. The differences between these methods are also compared in a systematic manner. Furthermore, we outline several graph-based anomaly analytics applications across various domains in the real world. Finally, we discuss five potential future research directions in this rapidly growing field. © 2023 Association for Computing Machinery
    corecore