A Unified Contrastive Transfer Framework with Propagation Structure for Boosting Low-Resource Rumor Detection

Abstract

The truth is significantly hampered by massive rumors that spread along with breaking news or popular topics. Since there is sufficient corpus gathered from the same domain for model training, existing rumor detection algorithms show promising performance on yesterday's news. However, due to a lack of training data and prior expert knowledge, they are poor at spotting rumors concerning unforeseen events, especially those propagated in different languages (i.e., low-resource regimes). In this paper, we propose a unified contrastive transfer framework to detect rumors by adapting the features learned from well-resourced rumor data to that of the low-resourced. More specifically, we first represent rumor circulated on social media as an undirected topology, and then train a Multi-scale Graph Convolutional Network via a unified contrastive paradigm. Our model explicitly breaks the barriers of the domain and/or language issues, via language alignment and a novel domain-adaptive contrastive learning mechanism. To enhance the representation learning from a small set of target events, we reveal that rumor-indicative signal is closely correlated with the uniformity of the distribution of these events. We design a target-wise contrastive training mechanism with three data augmentation strategies, capable of unifying the representations by distinguishing target events. Extensive experiments conducted on four low-resource datasets collected from real-world microblog platforms demonstrate that our framework achieves much better performance than state-of-the-art methods and exhibits a superior capacity for detecting rumors at early stages.Comment: A significant extension of the first contrastive approach for low-resource rumor detection (arXiv:2204.08143

    Similar works

    Full text

    thumbnail-image

    Available Versions