740 research outputs found

    Diseases of the Chest, Breast, Heart and Vessels 2019-2022

    Get PDF
    This open access book focuses on diagnostic and interventional imaging of the chest, breast, heart, and vessels. It consists of a remarkable collection of contributions authored by internationally respected experts, featuring the most recent diagnostic developments and technological advances with a highly didactical approach. The chapters are disease-oriented and cover all the relevant imaging modalities, including standard radiography, CT, nuclear medicine with PET, ultrasound and magnetic resonance imaging, as well as imaging-guided interventions. As such, it presents a comprehensive review of current knowledge on imaging of the heart and chest, as well as thoracic interventions and a selection of "hot topics". The book is intended for radiologists, however, it is also of interest to clinicians in oncology, cardiology, and pulmonology

    Early detection of lung cancer - A challenge

    Get PDF
    Lung cancer or lung carcinoma, is a common and serious type of cancer caused by rapid cell growth in tissues of the lung. Lung cancer detection at its earlier stage is very difficult because of the structure of the cell alignment which makes it very challenging. Computed tomography (CT) scan is used to detect the presence of cancer and its spread. Visual analysis of CT scan can lead to late treatment of cancer; therefore, different steps of image processing can be used to solve this issue. A comprehensive framework is used for the classification of pulmonary nodules by combining appearance and shape feature descriptors, which helps in the early diagnosis of lung cancer. 3D Histogram of Oriented Gradient (HOG), Resolved Ambiguity Local Binary Pattern (RALBP) and Higher Order Markov Gibbs Random Field (MGRF) are the feature descriptors used to explain the nodule’s appearance and compared their performance. Lung cancer screening methods, image processing techniques and nodule classification using radiomic-based framework are discussed in this paper which proves to be very effective in lung cancer prediction. Good performance is shown by using RALBP descriptor

    Diseases of the Chest, Breast, Heart and Vessels 2019-2022

    Get PDF
    This open access book focuses on diagnostic and interventional imaging of the chest, breast, heart, and vessels. It consists of a remarkable collection of contributions authored by internationally respected experts, featuring the most recent diagnostic developments and technological advances with a highly didactical approach. The chapters are disease-oriented and cover all the relevant imaging modalities, including standard radiography, CT, nuclear medicine with PET, ultrasound and magnetic resonance imaging, as well as imaging-guided interventions. As such, it presents a comprehensive review of current knowledge on imaging of the heart and chest, as well as thoracic interventions and a selection of "hot topics". The book is intended for radiologists, however, it is also of interest to clinicians in oncology, cardiology, and pulmonology

    Role of combined wash-in and wash-out threshold criteria on dynamic multislice CECT for solitary pulmonary nodule characterisation: data from Indian tertiary care hospital

    Get PDF
    Background: To prospectively assess the accuracy of combined wash-in and washout characteristics at dynamic contrast material–enhanced multi– detector row computed tomography (CT in distinguishing benign from malignant solitary pulmonary nodule (SPN).Methods: Institutional review board approval and informed consent were obtained. The study included 30 patients (16 men, 14 women; mean age, 52 years; range, 25-80 years) with SPN. After unenhanced CT (1.25mm collimation) scan, dynamic CT was performed (series of images obtained throughout the nodule, with 0.6mm collimation, at 30, 60, 90, and 120 seconds and 4, 5, 9, 12, and 15 minutes) after intravenous injection of contrast medium (120 mL). The HU value of nodule was noted at each of the scans. Data was analyzed for dynamic enhancement characteristics. FNAC from the nodule was done in all patients. The data were correlated with the cytopathological and follow –up results. The significance of various dynamic enhancement features and different threshold criteria for wash-in and wash-out of contrast medium for differentiation between benign and malignant nodules were derived.Results: There were 16 malignant and 14 benign nodules. When diagnostic criteria for malignancy of both wash-in of 25 HU or greater and washout of 5-34 HU were applied, sensitivity, specificity, and accuracy for malignancy were 100%, 92.8% and 96.7% respectively.Conclusions: Evaluation of solitary pulmonary nodules by analyzing combined wash-in and washout characteristics at dynamic contrast-enhanced multi– detector row CT showed 96.7% accuracy (p<0.001) for distinguishing benign nodules from malignant nodules

    Development, Implementation and Pre-clinical Evaluation of Medical Image Computing Tools in Support of Computer-aided Diagnosis: Respiratory, Orthopedic and Cardiac Applications

    Get PDF
    Over the last decade, image processing tools have become crucial components of all clinical and research efforts involving medical imaging and associated applications. The imaging data available to the radiologists continue to increase their workload, raising the need for efficient identification and visualization of the required image data necessary for clinical assessment. Computer-aided diagnosis (CAD) in medical imaging has evolved in response to the need for techniques that can assist the radiologists to increase throughput while reducing human error and bias without compromising the outcome of the screening, diagnosis or disease assessment. More intelligent, but simple, consistent and less time-consuming methods will become more widespread, reducing user variability, while also revealing information in a more clear, visual way. Several routine image processing approaches, including localization, segmentation, registration, and fusion, are critical for enhancing and enabling the development of CAD techniques. However, changes in clinical workflow require significant adjustments and re-training and, despite the efforts of the academic research community to develop state-of-the-art algorithms and high-performance techniques, their footprint often hampers their clinical use. Currently, the main challenge seems to not be the lack of tools and techniques for medical image processing, analysis, and computing, but rather the lack of clinically feasible solutions that leverage the already developed and existing tools and techniques, as well as a demonstration of the potential clinical impact of such tools. Recently, more and more efforts have been dedicated to devising new algorithms for localization, segmentation or registration, while their potential and much intended clinical use and their actual utility is dwarfed by the scientific, algorithmic and developmental novelty that only result in incremental improvements over already algorithms. In this thesis, we propose and demonstrate the implementation and evaluation of several different methodological guidelines that ensure the development of image processing tools --- localization, segmentation and registration --- and illustrate their use across several medical imaging modalities --- X-ray, computed tomography, ultrasound and magnetic resonance imaging --- and several clinical applications: Lung CT image registration in support for assessment of pulmonary nodule growth rate and disease progression from thoracic CT images. Automated reconstruction of standing X-ray panoramas from multi-sector X-ray images for assessment of long limb mechanical axis and knee misalignment. Left and right ventricle localization, segmentation, reconstruction, ejection fraction measurement from cine cardiac MRI or multi-plane trans-esophageal ultrasound images for cardiac function assessment. When devising and evaluating our developed tools, we use clinical patient data to illustrate the inherent clinical challenges associated with highly variable imaging data that need to be addressed before potential pre-clinical validation and implementation. In an effort to provide plausible solutions to the selected applications, the proposed methodological guidelines ensure the development of image processing tools that help achieve sufficiently reliable solutions that not only have the potential to address the clinical needs, but are sufficiently streamlined to be potentially translated into eventual clinical tools provided proper implementation. G1: Reducing the number of degrees of freedom (DOF) of the designed tool, with a plausible example being avoiding the use of inefficient non-rigid image registration methods. This guideline addresses the risk of artificial deformation during registration and it clearly aims at reducing complexity and the number of degrees of freedom. G2: The use of shape-based features to most efficiently represent the image content, either by using edges instead of or in addition to intensities and motion, where useful. Edges capture the most useful information in the image and can be used to identify the most important image features. As a result, this guideline ensures a more robust performance when key image information is missing. G3: Efficient method of implementation. This guideline focuses on efficiency in terms of the minimum number of steps required and avoiding the recalculation of terms that only need to be calculated once in an iterative process. An efficient implementation leads to reduced computational effort and improved performance. G4: Commence the workflow by establishing an optimized initialization and gradually converge toward the final acceptable result. This guideline aims to ensure reasonable outcomes in consistent ways and it avoids convergence to local minima, while gradually ensuring convergence to the global minimum solution. These guidelines lead to the development of interactive, semi-automated or fully-automated approaches that still enable the clinicians to perform final refinements, while they reduce the overall inter- and intra-observer variability, reduce ambiguity, increase accuracy and precision, and have the potential to yield mechanisms that will aid with providing an overall more consistent diagnosis in a timely fashion

    Full-resolution Lung Nodule Segmentation from Chest X-ray Images using Residual Encoder-Decoder Networks

    Full text link
    Lung cancer is the leading cause of cancer death and early diagnosis is associated with a positive prognosis. Chest X-ray (CXR) provides an inexpensive imaging mode for lung cancer diagnosis. Suspicious nodules are difficult to distinguish from vascular and bone structures using CXR. Computer vision has previously been proposed to assist human radiologists in this task, however, leading studies use down-sampled images and computationally expensive methods with unproven generalization. Instead, this study localizes lung nodules using efficient encoder-decoder neural networks that process full resolution images to avoid any signal loss resulting from down-sampling. Encoder-decoder networks are trained and tested using the JSRT lung nodule dataset. The networks are used to localize lung nodules from an independent external CXR dataset. Sensitivity and false positive rates are measured using an automated framework to eliminate any observer subjectivity. These experiments allow for the determination of the optimal network depth, image resolution and pre-processing pipeline for generalized lung nodule localization. We find that nodule localization is influenced by subtlety, with more subtle nodules being detected in earlier training epochs. Therefore, we propose a novel self-ensemble model from three consecutive epochs centered on the validation optimum. This ensemble achieved a sensitivity of 85% in 10-fold internal testing with false positives of 8 per image. A sensitivity of 81% is achieved at a false positive rate of 6 following morphological false positive reduction. This result is comparable to more computationally complex systems based on linear and spatial filtering, but with a sub-second inference time that is faster than other methods. The proposed algorithm achieved excellent generalization results against an external dataset with sensitivity of 77% at a false positive rate of 7.6
    corecore