3,019 research outputs found

    Enhancing spatial resolution of remotely sensed data for mapping freshwater environments

    Get PDF
    Freshwater environments are important for ecosystem services and biodiversity. These environments are subject to many natural and anthropogenic changes, which influence their quality; therefore, regular monitoring is required for their effective management. High biotic heterogeneity, elongated land/water interaction zones, and logistic difficulties with access make field based monitoring on a large scale expensive, inconsistent and often impractical. Remote sensing (RS) is an established mapping tool that overcomes these barriers. However, complex and heterogeneous vegetation and spectral variability due to water make freshwater environments challenging to map using remote sensing technology. Satellite images available for New Zealand were reviewed, in terms of cost, and spectral and spatial resolution. Particularly promising image data sets for freshwater mapping include the QuickBird and SPOT-5. However, for mapping freshwater environments a combination of images is required to obtain high spatial, spectral, radiometric, and temporal resolution. Data fusion (DF) is a framework of data processing tools and algorithms that combines images to improve spectral and spatial qualities. A range of DF techniques were reviewed and tested for performance using panchromatic and multispectral QB images of a semi-aquatic environment, on the southern shores of Lake Taupo, New Zealand. In order to discuss the mechanics of different DF techniques a classification consisting of three groups was used - (i) spatially-centric (ii) spectrally-centric and (iii) hybrid. Subtract resolution merge (SRM) is a hybrid technique and this research demonstrated that for a semi aquatic QuickBird image it out performed Brovey transformation (BT), principal component substitution (PCS), local mean and variance matching (LMVM), and optimised high pass filter addition (OHPFA). However some limitations were identified with SRM, which included the requirement for predetermined band weights, and the over-representation of the spatial edges in the NIR bands due to their high spectral variance. This research developed three modifications to the SRM technique that addressed these limitations. These were tested on QuickBird (QB), SPOT-5, and Vexcel aerial digital images, as well as a scanned coloured aerial photograph. A visual qualitative assessment and a range of spectral and spatial quantitative metrics were used to evaluate these modifications. These included spectral correlation and root mean squared error (RMSE), Sobel filter based spatial edges RMSE, and unsupervised classification. The first modification addressed the issue of predetermined spectral weights and explored two alternative regression methods (Least Absolute Deviation, and Ordinary Least Squares) to derive image-specific band weights for use in SRM. Both methods were found equally effective; however, OLS was preferred as it was more efficient in processing band weights compared to LAD. The second modification used a pixel block averaging function on high resolution panchromatic images to derive spatial edges for data fusion. This eliminated the need for spectral band weights, minimised spectral infidelity, and enabled the fusion of multi-platform data. The third modification addressed the issue of over-represented spatial edges by introducing a sophisticated contrast and luminance index to develop a new normalising function. This improved the spatial representation of the NIR band, which is particularly important for mapping vegetation. A combination of the second and third modification of SRM was effective in simultaneously minimising the overall spectral infidelity and undesired spatial errors for the NIR band of the fused image. This new method has been labelled Contrast and Luminance Normalised (CLN) data fusion, and has been demonstrated to make a significant contribution in fusing multi-platform, multi-sensor, multi-resolution, and multi-temporal data. This contributes to improvements in the classification and monitoring of fresh water environments using remote sensing

    The application of remote sensing techniques: Technical and methodological issues

    Get PDF
    Capabilities and limitations of modern imaging electromagnetic sensor systems are outlined, and the products of such systems are compared with those of the traditional aerial photographic system. Focus is given to the interface between the rapidly developing remote sensing technology and the information needs of operational agencies, and communication gaps are shown to retard early adoption of the technology by these agencies. An assessment is made of the current status of imaging remote sensors and their potential for the future. Public sources of remote sensor data and several cost comparisons are included

    Trying to break new ground in aerial archaeology

    Get PDF
    Aerial reconnaissance continues to be a vital tool for landscape-oriented archaeological research. Although a variety of remote sensing platforms operate within the earth’s atmosphere, the majority of aerial archaeological information is still derived from oblique photographs collected during observer-directed reconnaissance flights, a prospection approach which has dominated archaeological aerial survey for the past century. The resulting highly biased imagery is generally catalogued in sub-optimal (spatial) databases, if at all, after which a small selection of images is orthorectified and interpreted. For decades, this has been the standard approach. Although many innovations, including digital cameras, inertial units, photogrammetry and computer vision algorithms, geographic(al) information systems and computing power have emerged, their potential has not yet been fully exploited in order to re-invent and highly optimise this crucial branch of landscape archaeology. The authors argue that a fundamental change is needed to transform the way aerial archaeologists approach data acquisition and image processing. By addressing the very core concepts of geographically biased aerial archaeological photographs and proposing new imaging technologies, data handling methods and processing procedures, this paper gives a personal opinion on how the methodological components of aerial archaeology, and specifically aerial archaeological photography, should evolve during the next decade if developing a more reliable record of our past is to be our central aim. In this paper, a possible practical solution is illustrated by outlining a turnkey aerial prospection system for total coverage survey together with a semi-automated back-end pipeline that takes care of photograph correction and image enhancement as well as the management and interpretative mapping of the resulting data products. In this way, the proposed system addresses one of many bias issues in archaeological research: the bias we impart to the visual record as a result of selective coverage. While the total coverage approach outlined here may not altogether eliminate survey bias, it can vastly increase the amount of useful information captured during a single reconnaissance flight while mitigating the discriminating effects of observer-based, on-the-fly target selection. Furthermore, the information contained in this paper should make it clear that with current technology it is feasible to do so. This can radically alter the basis for aerial prospection and move landscape archaeology forward, beyond the inherently biased patterns that are currently created by airborne archaeological prospection

    Use of ERTS-1 data: Summary report of work on ten tasks

    Get PDF
    The author has identified the following significant results. Depth mapping's for a portion of Lake Michigan and at the Little Bahama Bank test site have been verified by use of navigation charts and on-site visits. A thirteen category recognition map of Yellowstone Park has been prepared. Model calculation of atmospheric effects for various altitudes have been prepared. Radar, SLAR, and ERTS-1 data for flooded areas of Monroe County, Michigan are being studied. Water bodies can be reliably recognized and mapped using maximum likelihood processing of ERTS-1 digital data. Wetland mapping has been accomplished by slicing of single band and/or ratio processing of two bands for a single observation date. Both analog and digital processing have been used to map the Lake Ontario basin using ERTS-1 data. Operating characteristic curves were developed for the proportion estimation algorithm to determine its performance in the measurement of surface water area. The signal in band MSS-5 was related to sediment content of waters by modelling approach and by relating surface measurements of water to processed ERTS data. Radiance anomalies in ERTS-1 data could be associated with the presence of oil on water in San Francisco Bay, but the anomalies were of the same order as those caused by variations in sediment concentration and tidal flushing

    An ERTS-1 investigation for Lake Ontario and its basin

    Get PDF
    The author has identified the following significant results. Methods of manual, semi-automatic, and automatic (computer) data processing were evaluated, as were the requirements for spatial physiographic and limnological information. The coupling of specially processed ERTS data with simulation models of the watershed precipitation/runoff process provides potential for water resources management. Optimal and full use of the data requires a mix of data processing and analysis techniques, including single band editing, two band ratios, and multiband combinations. A combination of maximum likelihood ratio and near-IR/red band ratio processing was found to be particularly useful

    Remote Sensing of Earth Resources (1970 - 1973 supplement): A literature survey with indexes. Section 2: Indexes

    Get PDF
    Documents related to the identification and evaluation by means of sensors in spacecraft and aircraft of vegetation, minerals, and other natural resources, and the techniques and potentialities of surveying and keeping up-to-date inventories of such riches are cited. These documents were announced in the NASA scientific and technical information system between March 1970 and December 1973

    Close-Range Sensing and Data Fusion for Built Heritage Inspection and Monitoring - A Review

    Get PDF
    Built cultural heritage is under constant threat due to environmental pressures, anthropogenic damages, and interventions. Understanding the preservation state of monuments and historical structures, and the factors that alter their architectural and structural characteristics through time, is crucial for ensuring their protection. Therefore, inspection and monitoring techniques are essential for heritage preservation, as they enable knowledge about the altering factors that put built cultural heritage at risk, by recording their immediate effects on monuments and historic structures. Nondestructive evaluations with close-range sensing techniques play a crucial role in monitoring. However, data recorded by different sensors are frequently processed separately, which hinders integrated use, visualization, and interpretation. This article’s aim is twofold: i) to present an overview of close-range sensing techniques frequently applied to evaluate built heritage conditions, and ii) to review the progress made regarding the fusion of multi-sensor data recorded by them. Particular emphasis is given to the integration of data from metric surveying and from recording techniques that are traditionally non-metric. The article attempts to shed light on the problems of the individual and integrated use of image-based modeling, laser scanning, thermography, multispectral imaging, ground penetrating radar, and ultrasonic testing, giving heritage practitioners a point of reference for the successful implementation of multidisciplinary approaches for built cultural heritage scientific investigations
    corecore