2,620 research outputs found

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Dynamic Analysis of X-ray Angiography for Image-Guided Coronary Interventions

    Get PDF
    Percutaneous coronary intervention (PCI) is a minimally-invasive procedure for treating patients with coronary artery disease. PCI is typically performed with image guidance using X-ray angiograms (XA) in which coronary arter

    Coronary Artery Segmentation and Motion Modelling

    No full text
    Conventional coronary artery bypass surgery requires invasive sternotomy and the use of a cardiopulmonary bypass, which leads to long recovery period and has high infectious potential. Totally endoscopic coronary artery bypass (TECAB) surgery based on image guided robotic surgical approaches have been developed to allow the clinicians to conduct the bypass surgery off-pump with only three pin holes incisions in the chest cavity, through which two robotic arms and one stereo endoscopic camera are inserted. However, the restricted field of view of the stereo endoscopic images leads to possible vessel misidentification and coronary artery mis-localization. This results in 20-30% conversion rates from TECAB surgery to the conventional approach. We have constructed patient-specific 3D + time coronary artery and left ventricle motion models from preoperative 4D Computed Tomography Angiography (CTA) scans. Through temporally and spatially aligning this model with the intraoperative endoscopic views of the patient's beating heart, this work assists the surgeon to identify and locate the correct coronaries during the TECAB precedures. Thus this work has the prospect of reducing the conversion rate from TECAB to conventional coronary bypass procedures. This thesis mainly focus on designing segmentation and motion tracking methods of the coronary arteries in order to build pre-operative patient-specific motion models. Various vessel centreline extraction and lumen segmentation algorithms are presented, including intensity based approaches, geometric model matching method and morphology-based method. A probabilistic atlas of the coronary arteries is formed from a group of subjects to facilitate the vascular segmentation and registration procedures. Non-rigid registration framework based on a free-form deformation model and multi-level multi-channel large deformation diffeomorphic metric mapping are proposed to track the coronary motion. The methods are applied to 4D CTA images acquired from various groups of patients and quantitatively evaluated

    A retinal vasculature tracking system guided by a deep architecture

    Get PDF
    Many diseases such as diabetic retinopathy (DR) and cardiovascular diseases show their early signs on retinal vasculature. Analysing the vasculature in fundus images may provide a tool for ophthalmologists to diagnose eye-related diseases and to monitor their progression. These analyses may also facilitate the discovery of new relations between changes on retinal vasculature and the existence or progression of related diseases or to validate present relations. In this thesis, a data driven method, namely a Translational Deep Belief Net (a TDBN), is adapted to vasculature segmentation. The segmentation performance of the TDBN on low resolution images was found to be comparable to that of the best-performing methods. Later, this network is used for the implementation of super-resolution for the segmentation of high resolution images. This approach provided an acceleration during segmentation, which relates to down-sampling ratio of an input fundus image. Finally, the TDBN is extended for the generation of probability maps for the existence of vessel parts, namely vessel interior, centreline, boundary and crossing/bifurcation patterns in centrelines. These probability maps are used to guide a probabilistic vasculature tracking system. Although segmentation can provide vasculature existence in a fundus image, it does not give quantifiable measures for vasculature. The latter has more practical value in medical clinics. In the second half of the thesis, a retinal vasculature tracking system is presented. This system uses Particle Filters to describe vessel morphology and topology. Apart from previous studies, the guidance for tracking is provided with the combination of probability maps generated by the TDBN. The experiments on a publicly available dataset, REVIEW, showed that the consistency of vessel widths predicted by the proposed method was better than that obtained from observers. Moreover, very noisy and low contrast vessel boundaries, which were hardly identifiable to the naked eye, were accurately estimated by the proposed tracking system. Also, bifurcation/crossing locations during the course of tracking were detected almost completely. Considering these promising initial results, future work involves analysing the performance of the tracking system on automatic detection of complete vessel networks in fundus images.Open Acces

    Estimating skeletal muscle fascicle curvature from B-mode ultrasound image sequences

    Get PDF
    We address the problem of tracking in vivo muscle fascicle shape and length changes using ultrasound video sequences. Quantifying fascicle behavior is required to improve understanding of the functional significance of a muscle's geometric properties. Ultrasound imaging provides a noninvasive means of capturing information on fascicle behavior during dynamic movements; to date however, computational approaches to assess such images are limited. Our approach to the problem is novel because we permit fascicles to take up nonlinear shape configurations. We achieve this using a Bayesian tracking framework that is: 1) robust, conditioning shape estimates on the entire history of image observations; and 2) flexible, enforcing only a very weak Gaussian Process shape prior that requires fascicles to be locally smooth. The method allows us to track and quantify fascicle behavior in vivo during a range of movements, providing insight into dynamic changes in muscle geometric properties which may be linked to patterns of activation and intramuscular forces and pressures

    Super-Resolution Contrast Enhanced Ultrasound Methodology for the Identification of in-Vivo Vascular Dynamics in 2D

    Get PDF
    \u3cp\u3eObjectives The aim of this study was to provide an ultrasound-based super-resolution methodology that can be implemented using clinical 2-dimensional ultrasound equipment and standard contrast-enhanced ultrasound modes. In addition, the aim is to achieve this for true-to-life patient imaging conditions, including realistic examination times of a few minutes and adequate image penetration depths that can be used to scan entire organs without sacrificing current super-resolution ultrasound imaging performance. Methods Standard contrast-enhanced ultrasound was used along with bolus or infusion injections of SonoVue (Bracco, Geneva, Switzerland) microbubble (MB) suspensions. An image analysis methodology, translated from light microscopy algorithms, was developed for use with ultrasound contrast imaging video data. New features that are tailored for ultrasound contrast image data were developed for MB detection and segmentation, so that the algorithm can deal with single and overlapping MBs. The method was tested initially on synthetic data, then with a simple microvessel phantom, and then with in vivo ultrasound contrast video loops from sheep ovaries. Tracks detailing the vascular structure and corresponding velocity map of the sheep ovary were reconstructed. Images acquired from light microscopy, optical projection tomography, and optical coherence tomography were compared with the vasculature network that was revealed in the ultrasound contrast data. The final method was applied to clinical prostate data as a proof of principle. Results Features of the ovary identified in optical modalities mentioned previously were also identified in the ultrasound super-resolution density maps. Follicular areas, follicle wall, vessel diameter, and tissue dimensions were very similar. An approximately 8.5-fold resolution gain was demonstrated in vessel width, as vessels of width down to 60 μm were detected and verified (λ = 514 μm). Best agreement was found between ultrasound measurements and optical coherence tomography with 10% difference in the measured vessel widths, whereas ex vivo microscopy measurements were significantly lower by 43% on average. The results were mostly achieved using video loops of under 2-minute duration that included respiratory motion. A feasibility study on a human prostate showed good agreement between density and velocity ultrasound maps with the histological evaluation of the location of a tumor. Conclusions The feasibility of a 2-dimensional contrast-enhanced ultrasound-based super-resolution method was demonstrated using in vitro, synthetic and in vivo animal data. The method reduces the examination times to a few minutes using state-of-the-art ultrasound equipment and can provide super-resolution maps for an entire prostate with similar resolution to that achieved in other studies.\u3c/p\u3

    Bayesian quantification for coherent anti-Stokes Raman scattering spectroscopy

    Full text link
    We propose a Bayesian statistical model for analyzing coherent anti-Stokes Raman scattering (CARS) spectra. Our quantitative analysis includes statistical estimation of constituent line-shape parameters, underlying Raman signal, error-corrected CARS spectrum, and the measured CARS spectrum. As such, this work enables extensive uncertainty quantification in the context of CARS spectroscopy. Furthermore, we present an unsupervised method for improving spectral resolution of Raman-like spectra requiring little to no \textit{a priori} information. Finally, the recently-proposed wavelet prism method for correcting the experimental artefacts in CARS is enhanced by using interpolation techniques for wavelets. The method is validated using CARS spectra of adenosine mono-, di-, and triphosphate in water, as well as, equimolar aqueous solutions of D-fructose, D-glucose, and their disaccharide combination sucrose

    Comparative Evaluation of Electrical Resistance Tomography, Positron Emission Particle Tracking and High-Speed Imaging for Analysing Horizontal Particle-Liquid Flow in a Pipe

    Get PDF
    We evaluate three experimental techniques - electrical resistance tomography (ERT), positron emission particle tracking (PEPT) and high-speed imaging (HSI) – for analysing the local particle velocity field and spatial distribution in a horizontal particle-liquid pipe flow under varying conditions of solid concentration. A new ERT methodology is devised for estimating particle velocity, circumventing the limitations of the conventional cross-correlation technique. Furthermore, an enhanced HSI approach is introduced and systematically compared with PEPT and ERT. Results show that, under all conditions, PEPT provides the most accurate particle velocity field followed by HSI, whilst ERT yields the most accurate concentration field, followed by HSI. The enhanced HSI emerges as a simple cost-effective option compared to PEPT and ERT. A combined measurement approach using PEPT for local particle velocity and ERT for local concentration, however, delivers the best comprehensive two-phase flow characterisation, highlighting potential synergies between these methods for complex flow studies

    Manual and automatic image analysis segmentation methods for blood flow studies in microchannels

    Get PDF
    In blood flow studies, image analysis plays an extremely important role to examine raw data obtained by high-speed video microscopy systems. This work shows different ways to process the images which contain various blood phenomena happening in microfluidic devices and in microcirculation. For this purpose, the current methods used for tracking red blood cells (RBCs) flowing through a glass capillary and techniques to measure the cell-free layer thickness in different kinds of microchannels will be presented. Most of the past blood flow experimental data have been collected and analyzed by means of manual methods, that can be extremely reliable, but they are highly time-consuming, user-intensive, repetitive, and the results can be subjective to user-induced errors. For this reason, it is crucial to develop image analysis methods able to obtain the data automatically. Concerning automatic image analysis methods for individual RBCs tracking and to measure the well known microfluidic phenomena cell-free layer, two developed methods are presented and discussed in order to demonstrate their feasibility to obtain accurate data acquisition in such studies. Additionally, a comparison analysis between manual and automatic methods was performed.This project has been funded by Portuguese national funds of FCT/MCTES (PIDDAC) through the base funding from the following research units: UIDB/00532/2020 (Transport Phenomena Research Center—CEFT), UIDB/04077/2020 (Mechanical Engineering and Resource Sustainability Center—MEtRICs), UIDB/00690/2020 (CIMO). The authors are also grateful for the partial funding of FCT through the projects, NORTE-01-0145-FEDER-029394 (PTDC/EMD-EMD/29394/2017) and NORTE-01-0145-FEDER-030171 (PTDC/EMD-EMD/30171/2017) funded by COMPETE2020, NORTE2020, PORTUGAL2020 and FEDER. D. Bento acknowledges the PhD scholarship SFRH/BD/ 91192/2012 granted by FCT
    • …
    corecore