1,208 research outputs found

    Data analytics enhanced data visualization and interrogation with parallel coordinates plots

    Full text link
    © 2018 IEEE. Parallel coordinates plots (PCPs) suffer from curse of dimensionality when used with larger multidimensional datasets. Curse of dimentionality results in clutter which hides important visual data trends among coordinates. A number of solutions to address this problem have been proposed including filtering, aggregation, and dimension reordering. These solutions, however, have their own limitations with regard to exploring relationships and trends among the coordinates in PCPs. Correlation based coordinates reordering techniques are among the most popular and have been widely used in PCPs to reduce clutter, though based on the conducted experiments, this research has identified some of their limitations. To achieve better visualization with reduced clutter, we have proposed and evaluated dimensions reordering approach based on minimization of the number of crossing pairs. In the last step, k-means clustering is combined with reordered coordinates to highlight key trends and patterns. The conducted comparative analysis have shown that minimum crossings pairs approach performed much better than other applied techniques for coordinates reordering, and when combined with k-means clustering, resulted in better visualization with significantly reduced clutter

    Two axes re-ordering methods in parallel coordinates plots

    Full text link
    © 2015 Elsevier Ltd. Visualization and interaction of multidimensional data are challenges in visual data analytics, which requires optimized solutions to integrate the display, exploration and analytical reasoning of data into one visual pipeline for human-centered data analysis and interpretation. Even though it is considered to be one of the most popular techniques for visualization and analysis of multidimensional data, parallel coordinate visualization is also suffered from the visual clutter problem as well as the computational complexity problem, same as other visualization methods in which visual clutter occurs where the volume of data needs to be visualized to be increasing. One straightforward way to address these problems is to change the ordering of axis to reach the minimal number of visual clutters. However, the optimization of the ordering of axes is actually a NP-complete problem. In this paper, two axes re-ordering methods are proposed in parallel coordinates visualization: (1) a contribution-based method and (2) a similarity-based method.The contribution-based re-ordering method is mainly based on the singular value decomposition (SVD) algorithm. It can not only provide users with the mathmetical theory for the selection of the first remarkable axis, but also help with visualizing detailed structure of the data according to the contribution of each data dimension. This approach reduces the computational complexity greatly in comparison with other re-ordering methods. A similarity-based re-ordering method is based on the combination of nonlinear correlation coefficient (NCC) and SVD algorithms. By using this approach, axes are re-ordered in line with the degree of similarities among them. It is much more rational, exact and systemic than other re-ordering methods, including those based on Pearson's correlation coefficient (PCC). Meanwhile, the paper also proposes a measurement of contribution rate of each dimension to reveal the property hidden in the dataset. At last, the rationale and effectiveness of these approaches are demonstrated through case studies. For example, the patterns of Smurf and Neptune attacks hidden in KDD 1999 dataset are visualized in parallel coordinates using contribution-based re-ordering method; NCC re-ordering method can enlarge the mean crossing angles and reduce the amount of polylines between the neighboring axes

    The visual uncertainty paradigm for controlling screen-space information in visualization

    Get PDF
    The information visualization pipeline serves as a lossy communication channel for presentation of data on a screen-space of limited resolution. The lossy communication is not just a machine-only phenomenon due to information loss caused by translation of data, but also a reflection of the degree to which the human user can comprehend visual information. The common entity in both aspects is the uncertainty associated with the visual representation. However, in the current linear model of the visualization pipeline, visual representation is mostly considered as the ends rather than the means for facilitating the analysis process. While the perceptual side of visualization is also being studied, little attention is paid to the way the visualization appears on the display. Thus, we believe there is a need to study the appearance of the visualization on a limited-resolution screen in order to understand its own properties and how they influence the way they represent the data. I argue that the visual uncertainty paradigm for controlling screen-space information will enable us in achieving user-centric optimization of a visualization in different application scenarios. Conceptualization of visual uncertainty enables us to integrate the encoding and decoding aspects of visual representation into a holistic framework facilitating the definition of metrics that serve as a bridge between the last stages of the visualization pipeline and the user's perceptual system. The goal of this dissertation is three-fold: i) conceptualize a visual uncertainty taxonomy in the context of pixel-based, multi-dimensional visualization techniques that helps systematic definition of screen-space metrics, ii) apply the taxonomy for identifying sources of useful visual uncertainty that helps in protecting privacy of sensitive data and also for identifying the types of uncertainty that can be reduced through interaction techniques, and iii) application of the metrics for designing information-assisted models that help in visualization of high-dimensional, temporal data
    • …
    corecore