4,083 research outputs found

    Unified bit-based probabilistic data association aided MIMO detection for high-order QAM constellations

    No full text
    A unified Bit-based Probabilistic Data Association (B-PDA) detection approach is proposed for Multiple-Input Multiple-Output (MIMO) systems employing high-order rectangular Quadrature Amplitude Modulation (QAM). The new approach transforms the symbol detection process of QAM to a bit-based process by introducing a Unified Matrix Representation (UMR) of QAM. Both linear natural and nonlinear binary reflected Gray bit-to-symbol mappings are considered. With the aid of simulation results, we demonstrate that the linear natural mapping based B-PDA approach typically attained an improved detection performance (measured in terms of both Bit Error Ratio (BER) and Symbol Error Ratio (SER)) in comparison to the conventional symbol-based PDA aided MIMO detector, despite its dramatically reduced computational complexity. The only exception is that at low SNRs, the linear natural mapping based B-PDA is slightly inferior in terms of its BER to the conventional symbol-based PDA using binary reflected Gray mapping. Furthermore, the simulation results show that the linear natural mapping based B-PDA MIMO detector may approach the best-case performance provided by the nonlinear binary reflected Gray mapping based B-PDA MIMO detector under ideal conditions. Additionally, the implementation of the B-PDA MIMO detector is shown to be much simpler in the case of the linear natural mapping. Based on these two points, we conclude that in the context of the uncoded B-PDA MIMO detector it is preferable to use the linear natural bit-to-symbol mapping, rather than the nonlinear Gray mapping

    Low-complexity dominance-based Sphere Decoder for MIMO Systems

    Full text link
    The sphere decoder (SD) is an attractive low-complexity alternative to maximum likelihood (ML) detection in a variety of communication systems. It is also employed in multiple-input multiple-output (MIMO) systems where the computational complexity of the optimum detector grows exponentially with the number of transmit antennas. We propose an enhanced version of the SD based on an additional cost function derived from conditions on worst case interference, that we call dominance conditions. The proposed detector, the king sphere decoder (KSD), has a computational complexity that results to be not larger than the complexity of the sphere decoder and numerical simulations show that the complexity reduction is usually quite significant

    EXIT chart analysis of iteratively detected and SVD-assisted broadband MIMO-BICM schemes

    Get PDF
    In this contribution the number of activated MIMO layers and the number of bits per symbol are jointly optimized under the constraint of a given fixed data throughput and integrity. In general, non-frequency selective MIMO links have attracted a lot of research and have reached a state of maturity. By contrast, frequency selective MIMO links require substantial further research, where spatio-temporal vector coding (STVC) introduced by Raleigh seems to be an appropriate candidate for broadband transmission channels. In analogy to bit-interleaved coded irregular modulation, a broadband MIMO-BICM scheme is introduced, where different signal constellations and mappings are used within a single codeword. Extrinsic Information Transfer (EXIT) charts are used for analyzing and optimizing the convergence behaviour of the iterative demapping and decoding. Our results show that in order to achieve the best bit-error rate, not necessarily all MIMO layers have to be activated

    Optical Asymmetric Modulation for VLC Systems

    Get PDF
    The explosive growth of connected devices and the increasing number of broadband users have led to an unprecedented growth in traffic demand. To this effect, the next generation wireless systems are envisioned to meet this growth and offer a potential data rate of 10 Gbps or more. In this context, an attractive solution to the current spectrum crunch issue is to exploit the visible light spectrum for the realization of high-speed commutation systems. However, this requires solutions to certain challenges relating to visible light communications (VLC), such as the stringent requirements of VLC-based intensity modulation and direct detection (IM/DD), which require signals to be real and unipolar. The present work proposes a novel power-domain multiplexing based optical asymmetric modulation (OAM) scheme for indoor VLC systems, which is particularly adapted to transmit high-order modulation signals using linear real and unipolar constellations that fit into the restrictions of IM/DD systems. It is shown that the proposed scheme provides improved system performance that outperforms alternative modulation schemes, at no extra complexity

    Unified bit-based probabilistic data association aided MIMO detection for high-order QAM

    No full text
    A unified Bit-based Probabilistic Data Association (B-PDA) detection approach is proposed for Multiple-Input Multiple-Output (MIMO) systems employing high-order Quadrature Amplitude Modulation (QAM). The new approach transforms the symbol detection process of QAM to a bit-based process by introducing a Unified Matrix Representation (UMR) of QAM. Both linear natural and nonlinear Gray bit-to-symbol mapping schemes are considered. Our analytical and simulation results demonstrate that the linear natural mapping based B-PDA approach attains an improved detection performance, despite dramatically reducing the computational complexity in contrast to the conventional symbol-based PDA aided MIMO detector. Furthermore, it is shown that the linear natural mapping based B-PDA method is capable of approaching the lower bound performance provided by the nonlinear Gray mapping based B-PDA MIMO detector. Since the linear natural mapping based scheme is simpler and more applicable in practice than its nonlinear Gray mapping based counterpart, we conclude that in the context of the uncoded B-PDA MIMO detector it is preferable to use the linear natural bit-to-symbol mapping, rather than the nonlinear Gray mapping
    corecore