6 research outputs found

    Simultaneous Target and Multipath Positioning

    Get PDF
    <p>In this work, we present the Simultaneous Target and Multipath Positioning (STAMP) technique to jointly estimate the unknown target position and uncertain multipath channel parameters. We illustrate the applications of STAMP for target tracking/geolocation problems using single-station hybrid TOA/AOA system, monostatic MIMO radar and multistatic range-based/AOA based localization systems. The STAMP algorithm is derived using a recursive Bayesian framework by including the target state and multipath channel parameters as a single random vector, and the unknown correspondence between observations and signal propagation channels is solved using the multi-scan multi-hypothesis data association. In the presence of the unknown time-varying number of multipath propagation modes, the STAMP algorithm is modified based on the single-cluster PHD filtering by modeling the multipath parameter state as a random finite set. In this case, the target state is defined as the parent process, which is updated by using a particle filter or multi-hypothesis Kalman filter. The multipath channel parameter is defined as the daughter process and updated based on an explicit Gaussian mixture PHD filter. Moreover, the idenfiability analysis of the joint estimation problem is provided in terms of Cramér-Rao lower bound (CRLB). The Fisher information contributed by each propagation mode is investigated, and the effect of Fisher information loss caused by the measurement origin uncertainty is also studied. The proposed STAMP algorithms are evaluated based on a set of illustrative numeric simulations and real data experiments with an indoor multi-channel radar testbed. Substantial improvement in target localization accuracy is observed.</p>Dissertatio

    The Bi-directional Spatial Spectrum for MIMO Radar and Its Applications

    Get PDF
    <p>Radar systems have long applied electronically-steered phased arrays to discriminate returns in azimuth angle and elevation angle. On receiver arrays, beamforming is performed after reception of the data, allowing for many adaptive array processing algorithms to be employed. However, on transmitter arrays, up until recently pre-determined phase shifts had to applied to each transmitter element before transmission, precluding adaptive transmit array processing schemes. Recent advances in multiple-input multiple-output radar techniques have allowed for transmitter channels to separated after data reception, allowing for virtual non-causal "after-the-fact" transmit beamforming. The ability to discriminate in both direction-of-arrival and direction-of-departure allows for the novel ability to discriminate line-of-sight returns from multipath returns. This works extends the concept of virtual non-causal transmit beamforming to the broader concept of a bi-directional spatial spectrum, and describes application of such a spectrum to applications such as spread-Doppler multipath clutter mitigation in ground-vehicle radar, and calibration of a receiver array of a MIMO system with ground clutter only. Additionally, for this work, a low-power MIMO radar testbed was developed for lab testing of MIMO radar concepts.</p>Dissertatio

    Information Theoretic Limits on Non-cooperative Airborne Target Recognition by Means of Radar Sensors

    Get PDF
    The main objective of this research is to demonstrate that information theory, and specifically the concept of mutual information (MI) can be used to predict the maximum target recognition performance for a given radar concept in combination with a given set of targets of interest. This approach also allows for the direct comparison of disparate approaches to designing a radar concept which is capable of target recognition without resorting to choosing specific feature extraction and classification algorithms. The main application area of the study is the recognition of fighter type aircraft using surface based radar systems, although the results are also applicable to airborne radars. Information theoretic concepts are developed mathematically for the analysis of the radar target recognition problem. The various forms of MI required for this application are derived in detail and are tested rigorously against results from digital communication theory. The results are also compared to Shannon’s channel capacity bound, which is the fundamental limit on the amount of information which can be transmitted over a channel. Several sets of simulation based experiments were conducted to demonstrate the insights achievable by applying MI concepts to quantitatively predict the maximum achievable performance of disparate approaches to the radar target recognition problem. Asymptotic computational electromagnetic code was applied to calculate the target’s response to the radar signal for freely available geometrical models of fighter aircraft. The calculated target responses were then used to quantify the amount of information which is transmitted back to the radar about the target as a function of signal to noise ratio (SNR). The information content of the F-14, F-15 and F-16 were evaluated for a 480 MHz bandwidth waveform at 10 GHz as a baseline. Several ultra-wideband (UWB) waveforms, spanning 2-10 GHz, 10- 18 GHz and 2-18 GHz, but which were highly range ambiguous, were evaluated and showed SNR gains of 0.5-2 dB relative to the baseline. The effect of sensing the full polarimetric response of an F-18 and F-35 was evaluated and SNR gains of 5-7 dB over a single linear polarisation were measured. A Boeing 707 scale model (1:25) was measured in the University of Pretoria’s compact range spanning 2-18 GHz and gains of 2 dB were observed between single and dual linear polarisations. This required numerical integration in 8004 dimensions, demonstrating the stability of the MI estimation algorithm in high dimensional signal spaces. The information gained by including the difference channel signal of an X-band monopulse radar for the F-14 data set was approximately 3 dB at 50 km and increased to 4.5 dB at 2 km due to the increased target extent relative to the antenna pattern. This experiment necessitated the use of target profiles which were matched to the range of the target to achieve maximum information transfer. Experiments were conducted to evaluate the loss in information due to envelope processing. For the baseline data set, SNR losses in the region of 7 dB were measured. Linear pre-processing using the fast Fourier transform (FFT) and principal component analysis (PCA), before envelope processing, were compared and the PCA algorithm outperformed the FFT by approximately 1 dB at high MI values. Finally, the expression for multi-target MI was applied in conjunction with Fano’s inequality to predict the probability of incorrectly classifying a target. Probability of error is a critical parameter for a radar user. For the baseline data set, at P(error) = 0.001, maximum losses in the region of 0.6 to 0.9 dB were measured. This result shows that these targets are easily separable in the signal space. This study was only the proverbial “tip of the iceberg” and future research could extend the results and applications of the techniques developed. The types of targets and configurations of the individual targets could be increased and analysed. The analysis should also be extended to describe effects internal to the radar such as phase noise, spurious signals and analogue to digital converters and external effects such as clutter and multipath. The techniques could also be applied to quantify the gains in target recognition performance achievable for multistatic radar, multiple input multiple output (MIMO) radar and more exotic concepts, such as the fusion of data from multiple monostatic microwave radars with multi-receiver multi-band passive bistatic radar (PBR) data

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion
    corecore