6 research outputs found

    Faster algorithms for 1-mappability of a sequence

    Full text link
    In the k-mappability problem, we are given a string x of length n and integers m and k, and we are asked to count, for each length-m factor y of x, the number of other factors of length m of x that are at Hamming distance at most k from y. We focus here on the version of the problem where k = 1. The fastest known algorithm for k = 1 requires time O(mn log n/ log log n) and space O(n). We present two algorithms that require worst-case time O(mn) and O(n log^2 n), respectively, and space O(n), thus greatly improving the state of the art. Moreover, we present an algorithm that requires average-case time and space O(n) for integer alphabets if m = {\Omega}(log n/ log {\sigma}), where {\sigma} is the alphabet size

    Scalable Construction of Text Indexes with Thrill

    Get PDF
    The suffix array is the key to efficient solutions for myriads of string processing problems in different application domains, like data compression, data mining, or bioinformatics. With the rapid growth of available data, suffix array construction algorithms have to be adapted to advanced computational models such as external memory and distributed computing. In this article, we present five suffix array construction algorithms utilizing the new algorithmic big data batch processing framework Thrill, which allows scalable processing of input sizes on distributed systems in orders of magnitude that have not been considered before

    Text indexing for long patterns: Anchors are all you need

    Get PDF
    In many real-world database systems, a large fraction of the data is represented by strings: Sequences of letters over some alphabet. This is because strings can easily encode data arising from different sources. It is often crucial to represent such string datasets in a compact form but also to simultaneously enable fast pattern matching queries. This is the classic text indexing problem. The four absolute measures anyone should pay attention to when designing or implementing a text index are: (ⅰ) index space; (ⅱ) query time;(ⅲ) construction space; and (iv) construction time. Unfortunately, however, most (if not all) widely-used indexes (e.g., suffix tree, suffix array, or their compressed counterparts) are not optimized for all four measures simultaneously, as it is difficult to have the best of all four worlds. Here, we take an important step in this direction by showing that text indexing with locally consistent anchors (lc-anchors) offers remarkably good performance in all four measures, when we have at hand a lower bound ℓ on the length of the queried patterns — which is arguably a quite reasonable assumption in practical applications. Specifically, we improve on the construction of the index proposed by Loukides and Pissis, which is based on bidirectional string anchors (bd-anchors), a new type of lc-anchors,by: (i) designing an average-case linear-time algorithm to compute bd-anchors; and (ii) developing a semi-external-memory implementation to construct the index in small space using near-optimal work. We then present an extensive experimental evaluation, based on the four measures, using real benchmark datasets. The results show that, for long patterns, the index constructed using our improved algorithms compares favorably to all classic indexes: (compressed) suffix tree; (compressed) suffix array; and the FM-index

    Parallel text index construction

    Get PDF
    In dieser Dissertation betrachten wir die parallele Konstruktion von Text-Indizes. Text-Indizes stellen Zusatzinformationen über Texte bereit, die Anfragen hinsichtlich dieser Texte beschleunigen können. Ein Beispiel hierfür sind Volltext-Indizes, welche für eine effiziente Phrasensuche genutzt werden, also etwa für die Frage, ob eine Phrase in einem Text vorkommt oder nicht. Diese Dissertation befasst sich hauptsächlich, aber nicht ausschließlich mit der parallelen Konstruktion von Text-Indizes im geteilten und verteilten Speicher. Im ersten Teil der Dissertation betrachten wir Wavelet-Trees. Dabei handelt es sich um kompakte Indizes, welche Rank- und Select-Anfragen von binären Alphabeten auf Alphabete beliebiger Größe verallgemeinern. Im zweiten Teil der Dissertation betrachten wir das Suffix-Array, den am besten erforschten Text-Index überhaupt. Das Suffix-Array enthält die Startpositionen aller lexikografisch sortierten Suffixe eines Textes, d.h., wir möchten alle Suffixe eines Textes sortieren. Oft wird das Suffix-Array um das Longest-Common-Prefix-Array (LCP-Array) erweitert. Das LCP-Array enthält die Länge der längsten gemeinsamen Präfixe zweier lexikografisch konsekutiven Suffixe. Abschließend nutzen wir verteilte Suffix- und LCP-Arrays, um den Distributed-Patricia-Trie zu konstruieren. Dieser erlaubt es uns, verschiedene Phrase-Anfragen effizienter zu beantworten, als wenn wir nur das Suffix-Array nutzen.The focus of this dissertation is the parallel construction of text indices. Text indices provide additional information about a text that allow to answer queries faster. Full-text indices for example are used to efficiently answer phrase queries, i.e., if and where a phrase occurs in a text. The research in this dissertation is focused on but not limited to parallel construction algorithms for text indices in both shared and distributed memory. In the first part, we look at wavelet trees: a compact index that generalizes rank and select queries from binary alphabets to alphabets of arbitrary size. In the second part of this dissertation, we consider the suffix array---one of the most researched text indices.The suffix array of a text contains the starting positions of the text's lexicographically sorted suffixes, i.e., we want to sort all its suffixes. Finally, we use the distributed suffix arrays (and LCP arrays) to compute distributed Patricia tries. This allows us to answer different phrase queries more efficiently than using only the suffix array

    Scalable String and Suffix Sorting: Algorithms, Techniques, and Tools

    Get PDF
    This dissertation focuses on two fundamental sorting problems: string sorting and suffix sorting. The first part considers parallel string sorting on shared-memory multi-core machines, the second part external memory suffix sorting using the induced sorting principle, and the third part distributed external memory suffix sorting with a new distributed algorithmic big data framework named Thrill.Comment: 396 pages, dissertation, Karlsruher Instituts f\"ur Technologie (2018). arXiv admin note: text overlap with arXiv:1101.3448 by other author
    corecore