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Abstract—The suffix array is the key to efficient solutions for
myriads of string processing problems in different application
domains, like data compression, data mining, or bioinformatics.
With the rapid growth of available data, suffix array construc-
tion algorithms have to be adapted to advanced computational
models such as external memory and distributed computing.
In this article, we present five suffix array construction algo-
rithms utilizing the new algorithmic big data batch processing
framework Thrill, which allows scalable processing of input
sizes on distributed systems in orders of magnitude that have
not been considered before.
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Suffix arrays [1], [2] are the basis for many text indices and
string algorithms. Suffix array construction is theoretically
linear work, but practical suffix sorting is computationally
intensive and often limits the applicability of advanced
text data structures on large datasets. While fast sequential
algorithms exist in the RAM model [3], [4], these are limited
by the CPU power and RAM size of a single machine.
External memory algorithms on a single machine are limited
by disk space [5]–[8], and often have long running times due
to mostly sequential computation or limited I/O bandwidth.

Most suffix array construction algorithms (SACAs) focus
only on sequential computation models. However, while the
volume of data is increasing, the speed of individual CPU
cores is not. This leaves us no choice but to consider shared-
memory parallelism and distributed cluster computation to
gain considerable speedups in the future. For this reason,
we propose to use the new big data processing framework
Thrill [9] to implement distributed external memory suffix
sorting algorithms for big data inputs.

Most SACAs employ a subset of three basic suffix sorting
principles: prefix doubling, recursion and inducing [10]. The
last type, inducing, is the basis for the fastest sequential suffix
array construction algorithms [3], [4]. It yields however only
well to parallelization for small alphabets [11] and it is
unclear how to map induced sorting efficiently to distributed
environments. Recently, a fast distributed prefix doubling
implementation using MPI has been presented [12]. While
they report high speeds for small inputs, we could not
successfully run their implementation on large inputs.

Our first three algorithms in Thrill are based on prefix
doubling. In Section II we first review the main idea behind

this technique, and then show how to implement it using
only the scalable primitives provided by Thrill. The result are
prefix doubling using the inverse suffix array (Section II-A),
prefix doubling using sorting (Section II-B), and prefix
doubling with discarding (Section II-C).

Our last two algorithms are distributed formulations of the
linear-time difference cover algorithm DC [13]. These employ
sorting, recursion, prefix sums, and merging of arrays, which
are all scalable primitives in Thrill. In Section III we recall
the DC3 algorithm in abstract form, and then present DC3
and DC7 in Section III-A using concrete Thrill pseudocode.

In Section IV we run the five Thrill implementations on
up to 32 hosts with fast NVMe SSDs and limited RAM
in the AWS Elastic Compute Cloud (EC2). We compare
them against two independent MPI implementations and
the two fastest non-distributed sequential suffix sorters as a
baseline. Our Thrill implementations scale higher than the
MPI implementations, which are constrained by RAM and
fail after 2 GiB. Comparing to the fastest sequential suffix
sorters, our best Thrill implementations outperform on digits
of π when run with 2 hosts (32 cores), and on Wikipedia
when run with 4 hosts (64 cores).

I. RELATED WORK

While there exist numerous works on sequential suffix
array construction, there is much fewer works on distributed
suffix sorting and no publications using distributed external
memory. In this paper we only review the publications most
relevant for our implementations in Thrill. Please refer to
our longer version [14, ch. 5] for a discussion of previous
external and distributed suffix sorting algorithms.

In 2003, Kärkkäinen and Sanders [15] presented a linear-
time SACA, the so called DC3 algorithm, that works
well in multiple advanced models of computation such as
external memory [5]–[8] and also parallel and distributed
environments. Kulla and Sanders later demonstrated the
scalability of the DC3 algorithm [16] by presenting a MPI
implementation. More recently, Flick and Aluru presented
an implementation of a prefix doubling algorithm in MPI
that can also compute the longest common prefix array [12].
Suffix array construction has also been considered in external
memory, where in theory the DC3 algorithm is optimal.
Dementiev, Kärkkäinen, Mehnert, and Sanders [6] compared
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multiple variants of prefix doubling and DC3 for external
memory in practice. Our prefix doubling and difference
cover algorithm implementations in Thrill are based on these
preceding publications.

As induced sorting has been successfully redesigned for
external memory [17], [18], the question naturally arises
why we did not consider it in a distributed environment.
The problem is that induced sorting appears very difficult to
parallelize. Up to now, it yields only well to parallelization
for specific inputs on small alphabets [11], and hence does
not appear to be a promising approach for general inputs in a
highly parallel and distributed setting. However, more future
work in this direction is needed, as important applications
such as bioinformatics have small alphabets.

A. Preliminaries and a Short Introduction into Thrill

Let [ 0, n ] := {0, . . . , n} and [ 0, n) := {0, . . . , n− 1} be
ranges of integers. For any array A, we write A[`, r] (or
A[`, r)) to denote the sub-array of A ranging from ` to r
(or r − 1). A string T = [ t0, . . . , t|T |−1 ] consists of |T |
characters from a totally ordered alphabet Σ. For simplicity,
we assume that t|T |−1 is a unique character ‘$’ that is also the
lexicographically smallest. We call the substring T [i..|T |) the
i-th suffix of T . The suffix array (SA) of T is a permutation
of [ 0, |T |) such that T [SA[i]..|T |) < T [SA[j]..|T |) for all
0 ≤ i < j < |T |. We call the inverse permutation of SA the
inverse suffix array (ISA). The longest common prefix of two
suffixes is LCP(i, j) := max {s : T [i..i+ s) = T [j..j + s)}
and the maximum length of any common prefix is denoted
by maxlcp := max {LCP(i, j) : 0 ≤ i < j < |T |}.

We implemented five SACAs using the distributed big data
batch computation framework Thrill [9], which works with
distributed immutable arrays (DIAs) storing tuples. Items
in DIAs cannot be accessed directly, instead there is a rich
set of DIA operations which can be used to transform DIAs
(we use and describe only a subset of these operations).

Filter(f) takes a DIA〈A〉 X and a function f : A →
bool, and returns the DIA〈A〉 containing [x ∈ X | f(x) ]
within which the order of items is maintained.

Map(f) applies the function f : A→ B to each item in
the input DIA〈A〉 X , and returns a DIA〈B〉 Y with Y [i] =
f(X[i]) for all i = 0, . . . , |X| − 1.

Windowk(w) and FlatWindowk(w′) take an input
DIA〈A〉 X and a window function w : N0 ×Ak → B. The
operation scans over X with a window of size k and applies
w once to each set of k consecutive items from X and
their index in X . The final k − 1 indexes with less than
k consecutive items are delivered to w as partial windows
padded with sentinel values. The result of all invocations of
w is returned as a DIA〈B〉 containing |X| items in the order.
FlatWindow is a variant of Window which takes a input
DIA〈A〉 X and a window function w′ : N0 ×Ak → list(B),
who can emit zero or more items that are concatenated in
the resulting DIA〈B〉.

PrefixSum(s) : Given an input DIA〈A〉 X and an
associative operation s : A × A → A (by default s = +),
PrefixSum returns a DIA〈A〉 Y such that Y [0] = X[0] and
Y [i] = s(Y [i− 1], X[i]) for all i = 1, . . . , |X| − 1.

Sort(c) sorts an input DIA〈A〉 X with respect to a less-
comparison function c : A×A→ bool.

Merge(X1, . . . , Xn, c) : Given a set of sorted DIA〈A〉s
X1, . . . , Xn and a less-comparison function c : A × A →
bool, Merge returns DIA〈A〉 Y that contains all tuples of
X1, . . . , Xn and is sorted with respect to c.

Zip(X1, . . . , Xn, f) : Given a set of DIAs X1, . . . , Xn

of type A1, . . . , An of equal size (|X1| = · · · = |Xn|) and
a function f : A1 × · · · ×An → B, Zip returns DIA〈B〉 Y
with Y [i] = f(X1[i], . . . , Xn[i]) for all i = 0, . . . , |X1| − 1.

ZipWithIndex(f) : Given an input DIA〈A〉 X and a
function f : A×N0 → B, ZipWithIndex returns DIA〈B〉 Y
with Y [i] = f(X[i], i) for all i = 0, . . . , |X| − 1

ZipWindow[k1,...,kn]([X1, . . . , Xn], z) : Combines
a Zip operation and a Window operation. Given a list
DIA〈A1〉X1, . . ., DIA〈An〉Xn, and a function z : N0 ×
Ak1

1 × . . . × Akn
n → B, ZipWithIndex returns DIA〈B〉 Y

with Y [i] = z(i,X1[i, . . . , i+k1], . . . , Xn[i, . . . , i+kn]) for
all i = 0, . . . , |X| − 1

Max(c) : Given an input DIA〈A〉 X , Max returns
the maximum item m = maxcX with respect to a less-
comparison function c : A×A→ bool.

Size() : Given an input DIA〈A〉 X , Size returns the
number of items in X , i.e., |X|.

Thrill applies chains of functions (method chaining) to a
DIA, e.g., if we have a DIA〈N0〉 N = {0, 1, 2, . . . , 9} and
want to compute the prefix sum of all odd elements, then
we write N.Filter(a 7→ (a mod 2) = 1).PrefixSum().

II. PREFIX DOUBLING ALGORITHMS

In this section, we start by reviewing prefix doubling for
suffix sorting. For better exposition of these ideas, we define
the h-order ≤h on strings as their lexicographic order limited
to depth h: a|h and b|h are the string a or b truncated to
h characters. Then a ≤h b if and only if a|h ≤ b|h. Other
comparison operators like a =h b and a <h b are defined
accordingly. For h < |T | the h-order of suffixes of a string
T may not be unique, e.g. with respect to ≤2 two suffixes
starting with the same 2 characters are considered equal, their
order is not fixed. A set of suffixes equal under =h is called
an h-group and they all start with the same h characters. A
rank with respect to ≤h of the suffixes in an h-group is any
number greater than the total size of all h-groups containing
lexicographically smaller suffixes and smaller than any rank
of an h-groups containing lexicographically larger suffixes.
A rank with respect to ≤h is also called a (lexicographic)
h-name or h-rank.

Since h doubles in each round, h ≥ |T | after dlog2 |T |e
rounds and thus prefix doubling algorithms have worst
case running time O(|T | log |T |). To be more precise,
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Algorithm 1: Prefix Doubling Algorithm in Thrill.

1 Function PrefixDoubling(T ∈ DIA〈Σ〉)
2 S := T.Window2((i, [ t0, t1 ]) 7→ (i, t0, t1))
3 for k := 1 to dlog2 |T |e − 1 do
4 S := S.Sort((i, n0, n1) by (n0, n1))
5 N := S.FlatWindow2((j, [ a, b ]) 7→ CName(j, a, b))
6 if N.Filter((i, n) 7→ (n = 0)).Size() = 1 then
7 return N.Map((i, n) 7→ i)

8 N :=N.PrefixSum((i, n), (i′, n′) 7→ (i′,max(n, n′))
9 S := Generate new name pairs using N

10 Function CName(j ∈ N0, (i, n0, n1), (i′, n′0, n
′
1) ∈ N )

11 if j = 0 then emit (i, 0)
12 if (n0, n1) 6= (n′0, n

′
1) then emit (i′, j)

13 else emit (i′, 0)

the algorithm terminates when SAh has no more un-
sorted h-groups and becomes the suffix array. This al-
ready happens after dlog2(maxlcp(T ))e iterations, yielding
O(n log(maxlcp(T ))) running time.

The essential goal of a prefix doubling algorithm is to give
each suffix a lexicographic 2k-name in iteration k using infor-
mation from iteration k− 1. Manber and Myers [1] observed
that one can compute a 2k-name for the prefix T [i..i+ 2k) of
suffix T [i..|T |) using already computed 2k−1-names of the
prefixes T [i..i+ 2k−1) and T [i+ 2k−1..i+ 2k). The main
idea to bringing this to external and distributed memory is
to store and sort tuples (i, ni) containing names ni in such a
way that we gain triples (i, ni, ni+2k−1) in iteration k. Using
two such triples one can take the step from 2k−1-names to 2k-
names: consider (i, ni, ni+2k−1) and (j, nj , nj+2k−1) with
ni = nj . This means that suffixes i and j start with the same
2k−1 characters, T [i..|T |) =(2k−1) T [j..|T |). By comparing
ni+2k−1 and nj+2k−1 , we can determine the lexicographic
order of the next 2k−1 characters, and hence compute new
names.

Algorithm 1 describes the basic structure of the prefix
doubling algorithms in Thrill presented in this section. The
whole algorithm requires one DIA N storing pairs and one
DIA S storing triples. For the first iteration, S contains the
triples (i, T [i], T [i + 1]) for all i = 0, . . . , |T | − 1 (line 2).
These triples contain a text position and the name pair for
that position, i.e, the two names that are required to compute
the new name for the suffix starting at the text position.
For bootstrapping the first iteration k = 1, we can simply
use the characters as 1-names. In our actual implementation,
we accelerated the first iteration with alphabet compression.
Quite often the input string does not use the whole alphabet
range. Hence, one can reduce the alphabet size by first
counting how many distinct characters occur in the input,
and then monotonously mapping them to a compressed range

[0 .. |Σ|). The input string and the mapped string have the
same suffix array, as the lexicographic order of suffixes does
not change. In our implementation, we then pack as many
mapped characters as possible into an integer index.

For subsequent iterations, we continue on line 4 and sort
S with respect to the name pair, which brings equal 2k−1-
names together. These entries with equal 2k−1-name need
to be extended to prefix depth 2k. The new 2k-names are
calculated using a FlatWindow2 on S (line 5) and the function
CName(), which takes the current position i in S and the
items S[i] and S[i+ 1] as input and emits a tuple consisting
of a text position and a new name (line 10). We know that the
suffixes are sorted with respect to their name pairs. Therefore,
we can scan S and mark every position where the name pair
differs from its predecessor. CName() marks these non-unique
name pairs by giving them the name 0. All unique name
pairs get a name equal to their current position in S. If there
is only one suffix with name 0, then we know that all names
differ and that we have finished the computation, see line 6.
Otherwise, we can use the DIA operation PrefixSum() with
a max operator to set the name of each tuple to the largest
preceding name (line 8). The sequence of names is initialized
by emitting an arbitrary first name (zero in line 11 of line 10)
as first item in the DIA. With this extra item, the name array
N always contains |T | items. Now each suffix has a new,
more refined name.

The next step (line 9) is to identify the ranks of the suffixes
required for the next doubling step. During the k-th doubling
step, we fill S with one triple for each index i = 0, . . . , |T |−1
that contains the current name of the suffix at position i and
the current name of the suffix at position i+ 2k−1. For this
step, we propose two different approaches: one using the
inverse suffix array and a Window operation (Section II-A),
and one using sorting (Section II-B).

A. Generating Names using the Inverse Suffix Array

We can obtain the h-names of the required suffixes using
the inverse h-suffix array. This approach is based on the
qsufsort algorithm [19] and was pioneered in a distributed
setting using MPI by Flick and Aluru [12].

Algorithm 2 shows in line 2 how we can sort pairs in
N based on their position in the text, such that we get the
inverse 2k-suffix array ISA2k in iteration k. This inverse
2k-suffix array contains the current 2k-name of each suffix.
For each position i, we need the name of the (i + 2k)-th
suffix. To get this name, we can simply scan over the DIA
N with a Window() operation of width 2k + 1, i.e., the same
as shifting the inverse 2k-suffix array by 2k positions and
appending 0s until its length is |T |.

While our experiments show that this approach is faster
than prefix doubling using sorting (described in the next
subsection), it is obvious that it only works as long as the
Window() size 2k + 1 fits into the RAM of each worker.

3



Algorithm 2: Generating Names using the ISA in Thrill.

1 Function PrefixDoublingISAWindow(k ∈ N0)
2 N := N.Sort((i, n) by i)
3 S := N.Window2k+1((j, [ (i, n), . . . , (i′, n′) ]) 7→{

(i, n, n′) if j + 2k < |T | ,
(i, n, 0) otherwise.

)

The second solution using sorting does not suffer from this
limitation and can be used as a fallback method.

B. Generating Names using Sorting

Next, we adapt an external memory prefix doubling
algorithm by Crauser and Ferragina [5] to Thrill. The idea
is to compute the new name pairs by sorting the old names
with respect to the starting position of the suffix, as shown
in Algorithm 3. During each iteration we know for each
suffix the suffix index whose current name is required to
compute the next refined name. Hence, we can sort the
tuples containing the starting positions of the suffixes and
their current name in such a way that if there is another
name required for a name pair, then it is the name of the
succeeding tuple (line 2). To do so, we use the following
comparison operator: <k

op: (N0,N0)× (N0,N0)→ bool in
Algorithm 3:

(i, n) <k
op (i′, n′) ={
i div 2k < i′ div 2k if i ≡ i′ (mod 2k) ,

i mod 2k < i′ mod 2k otherwise.

This relation orders pairs (i, n) first by the k least significant
bits and then by the w − k most significant bits of i, where
w is the number of bits used to store i. For example <2

op

reorders [0 .. 8) to [ 0, 4, 1, 5, 2, 6, 3, 7 ].
After sorting using the <k

op-comparator, we need to ensure
that two consecutive names are the ones required to compute
the new name, since the required name may not exist due to
the length of the text. This occurs during the k-th iteration for
each suffix beginning at a text position greater than |T | − 2k.
In this case we use the sentinel name 0, which compares
smaller than any valid name (line 3). We return one triple for
each position, consisting of a text position, the current name
of the suffix beginning at that position and the name of the
suffix 2k positions to the right (if it exists and 0 otherwise).

C. Distributed External Prefix Doubling with Discarding

Both prefix doubling variants presented in the previous
two sections have large I/O costs from repeatedly re-ranking
suffixes whose final rank is already known. These are
included in each distributed sorting operation and cause
needless overhead. Crauser and Ferragina [5], and Dementiev,
Kärkkäinen, Mehnert and Sanders [6] presented a method
called discarding to alleviate this by omitting all suffixes

Algorithm 3: Generating Names using Sorting in Thrill.

1 Function PrefixDoublingSorting(N, k ∈ N0)
2 N := N.Sort(<k

op)
3 S := N.Window2((j, [ (i, n0, n1), (i′, n′0, n

′
1) ]) 7→{

(i, n0, n
′
0) if i+ 2k = i′ ,

(i, n0, 0) otherwise.

)

no longer needed from sorting operations. To this end, we
classify suffixes into three categories:

1) Suffixes that do not yet have a unique name are called
not unique, which is also the initial state,

2) suffixes that have a unique name, but are required to
compute another name pair for a suffix that does not
yet have a unique name, are called unique, and finally

3) unique suffixes that are no longer needed for any other
can be discarded.

Using this classification we can extend the prefix doubling
algorithm using sorting for generating new names (Sec-
tion II-B) to exclude unique and discarded suffixes from
expensive sorting operations. To be more precise, we can
ignore discarded suffixes during all sorting operations, and
unique suffixes are only required during the computation
of the new names (Algorithm 3). Here, they are needed as
second rank of the triple (n′0 in line 3). We do not emit a
triple for an index corresponding to a unique suffix. Instead,
we just store the unique pair. The algorithm terminates when
all suffixes are either unique or discarded. To compute the
final suffix array, we concatenate the unique and discarded
pairs and sort them by their rank.

Since we ignore discarded suffixes during the computation
of the new ranks, we must compute the new rank based
on the old rank instead of on the position among all other
suffixes, as we did before. This can be done using multiple
prefix sum operations. In addition, we must keep track of
the unique and discarded suffixes, but the total overhead is
small compared to the savings during the sorting operations.

Please refer to our longer version [14, ch. 8.2.5] for the
pseudocode and full explanation of the discarding algorithm.

III. DIFFERENCE COVER ALGORITHMS

In 2003, the skew aka DC3 suffix sorting algorithm was
proposed by Kärkkäinen and Sanders [15], and later general-
ized to DC by Kärkkäinen, Sanders, and Burkhardt [13]. They
employ recursion on a subset of the suffixes to reach linear
running time in the sequential RAM model. The algorithms
were later implemented for external memory [6], [20], and
DC3 for distributed memory using MPI [16].

The key notion of DC is to recursively calculate the ranks
of suffixes in only a difference cover [21] of the original
text. A set D ⊆ N0 is a difference cover for v ∈ N0, if
{(i − j) mod v | i, j ∈ D} = {0, . . . , v − 1}. Examples of
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difference covers are D3 = {1, 2} for v = 3, D7 = {0, 1, 3}
for v = 7, and D13 = {0, 1, 3, 9} for v = 13. In general, a
difference cover of size O(

√
v) can be calculated for any

v in O(
√
v) time [13]. With respect to suffix sorting, the

difference cover has the interesting property that it samples
suffixes for recursive sorting and given the rank of all samples
allows one to order the non-sample suffixes using a constant-
time comparison operation. The basic steps of the DC3
algorithm are the following:

D1) Calculate ranks for all suffixes starting at positions in
the difference cover D3 = {1, 2} modulo 3. This is
done by sorting the triples (T [i], T [i + 1], T [i + 2])
for (i mod 3) ∈ D3, calculating lexicographic names,
sorting the names back to string order, and recursively
calling a suffix sorting algorithm on a reduced string TR
of size 2

3 |T |, if necessary. This reduced string represents
two concatenated copies of the input string using the
lexicographic names: the first copy are all names for
suffixes with i = 1 mod 3 followed by a second copy for
all suffixes with i = 2 mod 3. Hence, each character in
TR embodies three characters in T . Step D1) calculates
two arrays, R1 and R2, containing the ranks of suffixes
i = 1 mod 3 and i = 2 mod 3, which are computed by
inverting the recursively constructed suffix array of TR.

D2) Scan the text T and rank arrays R1 and R2 to generate
three arrays: S0, S1, and S2, where array Sj contains
one tuple for each suffix i with i = j mod 3. For each
suffix i, the arrays store one tuple containing the two
following ranks from R1 and R2 and all characters from
T up to the next ranks. This is exactly the information
required such that the following merge step is able to
deduce the suffix array correctly. Due to the difference
cover property the following rank for each suffix i is
among the three elements R1[i], R1[i+1], and R1[i+2]
for R1, and analogously for R2.

D3) Sort S0, S1, and S2 and merge them using a custom
comparison function which compares the suffixes repre-
sented in the tuples using characters and ranks. Only
a constant number of characters and ranks need to be
accessed in each comparison. Output the suffix array
using the indices stored in tuples.

The first two steps of the DC3 algorithms can be seen
as preparation for the final merge in step D3). Step D1)
delivers ranks for all suffixes (i mod 3) ∈ D3 in R1 and
R2. In step D2) tuples are created in S0, S1, and S2 which
are constructed from the recursively calculated ranks and
characters from the text. The tuples are designed such that
the comparison function can fully determine the final suffix
array.

The DC3 algorithm generalizes to DC using a dif-
ference cover D for any ground set size v ≥ 3. DC
constructs a recursive subproblem of size d(|T |/v)|D|e,
which, considering |D| = O(

√
v), is of size Θ( 1√

v
). The

Algorithm 4: DC3 Algorithm in Thrill.
1 Function DC3(T ∈ DIA〈Σ〉)
2 T3 := T.FlatWindow3((i, [ c0, c1, c2 ]) 7→ Triple(i, c0, c1, c2))
3 with Function Triple(i ∈ N0, c0, c1, c2 ∈ Σ)
4 if i 6= 0 mod 3 then emit (i, c0, c1, c2)

5 S := T3.Sort((i, c0, c1, c2) by (c0, c1, c2))
6 IS := S.Map((i, c0, c1, c2) 7→ i)
7 N ′ := S.FlatWindow2((i, [ p0, p1 ]) 7→ CTriple(i, p0, p1))
8 with Function CTriple(i ∈ N0, (c0, c1, c2), (c′0, c

′
1, c

′
2))

9 if i = 0 then emit 0
10 emit (if (c0, c1, c2) = (c′0, c

′
1, c

′
2) then 0 else 1)

11 N := N ′.PrefixSum()
12 nsub = d2|T |/3e, nmod1 = d|T |/3e
13 if N.Max() + 1 6= nsub then
14 T ′

R := Zip([ IS , N ], (i, n) 7→ (i, n))
.Sort((i, n) by (i mod 3, i div 3))

15 SAR := DC3(T ′
R.Map((i, n) 7→ n))

16 I ′R := SAR.ZipWithIndex((r, i) 7→ (r, i))
17 IR := I ′R.Sort((r, i) by (r mod nmod1, r))
18 else
19 R := IS .ZipWithIndex((r, i) 7→ (r, i))
20 IR := R.Sort((r, i) by (r div 3, r))

21 IR := IR.Map((r, i) 7→ (i + 1))
22 Z′ := ZipWindow[3,2]([T, IR],

(i, [ c0, c1, c2 ], [ r1, r2 ]) 7→ (c0, c1, c2, r1, r2))
23 Z := Z′.Window2((i, [ (z1, z2) ]) 7→ (i, z1, z2))
24 S0 := Z.Map((i, (c0, c1, c2, r1, r2), (c̄0, c̄1, c̄2, r̄1, r̄2)) 7→

(3i + 0, c0, c1, r1, r2)).Sort((i, c0, c1, r1, r2) by (c0, r1))
25 S1 := Z.Map((i, (c0, c1, c2, r1, r2), (c̄0, c̄1, c̄2, r̄1, r̄2)) 7→

(3i + 1, c1, r1, r2)).Sort((i, c1, r1, r2) by (r1))
26 S2 := Z.Map((i, (c0, c1, c2, r1, r2), (c̄0, c̄1, c̄2, r̄1, r̄2)) 7→

(3i + 2, c2, r2, c̄0, r̄1)).Sort((i, c2, r2, c̄0, r̄1) by (r2))
27 return Merge([S0, S1, S2 ],CmpDC3).Map((i, . . .) 7→ i)

with Function CmpDC3(z1, z2)
28 (c0, r1) < (c′1, r

′
2) if z1 = (i, c0, c1, r1, r2) ∈ S0,

z2 = (i′, c′1, r
′
1, r

′
2) ∈ S1,

29 (c0, c1, r2)< (c′2, c̄
′
0, r̄

′
1) if z1 = (i, c0, c1, r1, r2) ∈ S0,

z2 = (i′, c′2, r
′
2, c̄

′
0, r̄

′
1)∈ S2,

30 (r1) < (r′2) if z1 = (i, c1, r1, r2) ∈ S1,
z2 = (i′, c′2, r

′
2, c̄

′
0, r̄

′
1)∈ S2,

31 and symmetrically if z1 ∈ Si, z2 ∈ Sj with i > j .

algorithm has at most logv |T | recursion levels and only
one recursion branch. At every level of the recursion, only
work with sorting complexity is needed, and a straight-
forward application of the Master theorem to the recurrence
Z(|T |) = Z(Θ( |T |√

v
)) +O(sort(|T |)) shows that the whole

algorithm has sorting complexity due to the small recursive
subproblem. For our distributed scenario, DC has the same
complexity as sorting and merging.

A. Distributed Difference Cover Algorithms with Thrill

The complete DC3 implementation in Thrill algorithm
code is shown as Algorithm 4. In the algorithm pseudocode
we omitted some details on padding and sentinels for inputs
that are not a multiple of the difference cover size, but our
actual implementation in Thrill covers all these edge cases.
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Goal of lines 2–20 is to calculate R1 and R2 as an inter-
leaved array IR. This is done by performing the following
steps:

1) Scan the text T using a FlatWindow operation and create
triples (i, c0, c1, c2) for all indices (i mod 3) ∈ D3 =
{1, 2} (lines 2–4).

2) Sort the triples as S, scan S and use a prefix sum
to calculate lexicographic names N (lines 5–11). The
lexicographic names are constructed in the prefix sum
from 0 and 1 indicators. The value 0 is used if two
lexicographic consecutive triples are equal, which means
they are assigned the same lexicographic name; the value
1 increments the name in the prefix sum and assigns
the unequal triple a new name.

3) Check if all lexicographic names are different by
comparing the highest lexicographic name against the
maximum possible (lines 12–13).

4) If all lexicographic names are different, then IS , which
contains the indices of S, is already the suffix array of
the suffixes in D3 (lines 19–20). Hence, R1 and R2

can be created directly: the suffix array IS only needs
to be inverted and split modulo 3. However, instead of
constructing R1 and R2 as separate DIAs, we interleave
them in IR using a Sort operation such that they are
balanced on the distributed system, as we will be needing
pairs of mod 1/2 ranks.

5) Otherwise, prepare a recursive subproblem TR to cal-
culate the ranks. First, sort the lexicographic names
back into string order such that TR = T1 ⊕ T2 where
⊕ is string concatenation (line 14). T1 represents the
complete text T using the lexicographic names of all
triples i = 1 mod 3, and T2 is another complete copy
of T with triples i = 2 mod 3. By replacing the triples
with lexicographic names, the original text is reduced by
2
3 . Second, recursively call any suffix sorting algorithm
(e.g. DC3) on TR (line 15). Last, invert the permutation
SAR to gain ranks R1 and R2 of triples of T in D3,
again interleave IR such that R1 and R2 are distributed
on the workers after the Sort operation.

With R1 and R2 interleaved in IR from step D1) (lines 2–
20), the objective of step D2) is to create S0, S1, and S2 in
line 22. Each suffix i has exactly one representative in the
array Sj where j = i mod 3. Its representative contains the
recursively calculated ranks of the two following suffixes in
the difference cover from R1 and R2 (two consecutive items
from IR), and the characters T [i], T [i+ 1], T [i+ 2], . . . up
to (but excluding) the next known rank.

For DC3 these are T [i], T [i+1], IR[ 2i3 ], and IR[ 2i3 +1] for
a suffix i = 0 mod 3 in S0. IR[ 2i3 ] = R1[ i3 ] is the rank of
the suffix T [i+ 1..|T |) and IR[ 2i3 + 1] = R2[ i3 ] is the rank
of suffix T [i+ 2..|T |), which are both in the difference cover.
We write the tuple as (i, c0, c1, r1, r2) where the indices are
interpreted relative to i mod 3. Each suffix i = 1 mod 3

in S1 stores T [i], R1[ i−13 ], and R2[ i−13 ] and we write the
tuples as (i, c1, r1, r2) where the indices again are relative
to i mod 3. And lastly, each suffix i = 2 mod 3 in S2 stores
T [i], T [i+1], R1[ i−23 +1], and R2[ i−23 ] because R1[ i−23 +1]
is the rank of suffix T [i+ 2..|T |).

In the Thrill algorithm code we construct the tuples by
zipping pairs from IR, and triple groups from T together.
The ZipWindow Z ′ (line 22) delivers (c0, c1, c2, r1, r2) for
each index i = 0 mod 3. To construct the tuples in Si

two adjacent tuples need to be used because S2’s element
are taken from the next tuple. This can be done in Thrill
using a Window operation of size 2 (line 23). Thus to
construct S0, S1, and S2, we take (c0, c1, c2, r1, r2) for
each index i = 0 mod 3 and (c̄0, c̄1, c̄2, r̄1, r̄2) for the next
index i mod 3 + 3, and output (3i+ 0, c0, c1, r1, r2) for S0,
(3i+1, c0, c1, r1, c2, r2) for S1, and (3i+2, c2, r2, c̄0, r̄1) for
S2, as described above (lines 24–26). The three arrays are
then sorted and merged, whereby the comparison function
compares two representatives characterwise until a rank is
found. The difference cover property guarantees that such
a rank is found for every pair Si, Sj during the Merge
(lines 27–31).

Most of the previous discussion on DC3 can be extended
to DC7 straightforwardly: Sort by seven characters instead of
three, construct TR = T0 ⊕ T1 ⊕ T3 in case not all character
tuples are unique, and have step D1) deliver R0, R1, and
R3 containing the ranks of all suffixes (i mod 7) ∈ D7.

IV. DISTRIBUTED EXTERNAL MEMORY EXPERIMENTS

We implemented the five SACAs described in the previous
sections using Thrill in C++. These implementations are
available as open-source at https://github.com/thrill/thrill.

Algorithms: We prefixed all Thrill implementations in
the experiment with a T and label prefix doubling with
a Window on the inverse suffix array from Section II-A
as T.PD-Window, prefix doubling with sorting from Sec-
tion II-B as T.PD-Sort, and prefix doubling with discarding
from Section II-C as T.PD-Discard. From Section III-A we
include T.DC3 and T.DC7. All Thrill implementations use
40-bit (5 byte) indices in the suffix array to support inputs
of up to 1 TiB. They also support 48-bit and 64-bit indices.

There are only two other distributed suffix sorting im-
plementations available. The first is pDC3 implemented
using MPI by Kulla and Sanders [16]. We took their
implementation, rewrote large parts, and extended it to
BKS.pDC3 and BKS.pDC7. Our improved pDCX version
is available at https://github.com/bingmann/pDCX. These
variants only support 32-bit (4 byte) indices, and thus are
limited to inputs of up to 4 GiB.

The second implementation is FA.psac by Flick and
Aluru [12] which is a highly engineered suffix sorter using
MPI. It is based on prefix doubling with the inverse suffix
array, but they enhanced it with alphabet compression
(see Section II) in the first iteration and by using list ranking
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instead of a full sort when only 1/10-th of all suffixes remain
unordered. The psac implementation always works with 64-
bit (8 byte) indices in the suffix array.

We also compare our distributed parallel implementations
against the fastest non-distributed suffix sorters, Mori’s
divsufsort 2.0.2-1 [3] and sais 2.4.1 [22]. Divsufsort comes in
two variants: M.divsufsort does not use any parallelization,
and M.divsufsort.par uses OpenMP parallelization only in
the first string sorting phase. Mori’s sais is always only
sequential, included as M.sais, and is an engineered version
of SA-IS [4], [23]. We had to fix an error in sais 2.4.1 for
2 GiB inputs, and could not find a second bug which makes
it crash for inputs larger than 4 GiB. We used the versions
of divsufsort and sais with 64-bit (8 byte) indices.

Inputs: For our experiments we selected three inputs,
which were also used by previous authors [7]. Wikipedia is
a 125.6 GiB XML dump of the English Wikipedia dated
enwiki-201701. Gutenberg is a concatenation of all
text documents from Project Gutenberg by document id as
available in September 2012. These total 23 GiB in size and
contain a version of the human genome as a subsequence. Pi
are the decimals of π, written as ASCII digits and starting
with “3.1415.” More information about the characteristics
and sources of these inputs is available in the longer version
of this paper [14, ch. 8]. Gutenberg and Wikipedia are diverse
real-world inputs, while Pi is random. We ran some additional
experiments with DNA data, but Pi delivered more consistent
results for random inputs. For scalability tests, we take
prefixes of size [0 .. 2k) of the inputs.

Platform: We ran our experiments on the Amazon
Web Services (AWS) Elastic Compute Cloud (EC2) using
i3.4xlarge instances. Each host had 16 Intel Xeon E5-2686
v4 Broadwell vCPUs with 2.30 GHz clock speed, 122 GB
RAM, and 2× 1.9 TB Non-Volatile Memory Express (NVMe)
SSDs. We measured that these SSDs reach effective sustained
sequential read speeds of 2.1 GiB/s and write speeds of
800 MiB/s each. The hosts were connected via the AWS
network, and reached 1 144 MiB/s simultaneous pair-wise
throughput bandwidth and 80 µs ping-pong round-trip latency
in a four host test setup. All experiments were run with
the Thrill master branch version from January 19th, 2018,
compiled with g++ 5.4.1 an Ubuntu Linux 16.04 “xenial”
using Linux 4.4.0-1052-aws. Our suffix sorting inputs were
stored on the AWS Elastic File System (EFS) and transferred
via NFS to the compute hosts. In total, the experiments
reported in the next section took 4 125 compute instance-
hours and cost $ 1 713.

For performing distributed external memory experiments,
we limited the available RAM on each host to 8 GB using
the kernel option mem=8G. This leaves about 7 GB for
Thrill, since the kernel reserves itself a considerable portion.
This limitation is extreme, but demonstrates that Thrill
can efficiently utilize disk space. For our non-distributed
comparison experiments with divsufsort and sais we removed

the memory limit.

A. The Results

We ran the algorithms on h instances for all powers of
two ranging from 1 to 32; as each host had 16 cores, the
highest core/worker count in our experiment was 512. For
each host configuration, we ran the algorithms on all input
prefixes from 16 MiB to h · 1 GiB, again doubling the size
in each step. Due to the quantity and considerable cost of
the experiments, we only ran each configuration once. All
constructed suffix arrays were verified to be correct using a
checking algorithm [6, Section 8].

First consider the results shown in Figure 1. The graphs
show the throughput of all suffix sorting configurations we ran
in our experiment. As expected, not all algorithms succeeded
in scaling to the large input sizes with limited available
memory, including some of our implementations in Thrill.

The MPI implementations are clearly limited by RAM:
considering that suffix sorting n bytes with 8 byte indices
requires at least 9n bytes of RAM, at most about 770 MiB can
be sorted by a single host in this setting. For 5 byte indices,
the constraint rises to about 1 150 MiB on a single host.
However, the MPI implementations BKS.pDC3, BKS.pDC7,
and FA.psac already stopped working much earlier than these
hard limits: on one and two hosts they could process at most
128 MiB, on four hosts at most 256 MiB, on eight hosts
at most 512 MiB, on 16 hosts at most 1 GiB, and on 32
hosts at most 2 GiB. FA.psac performed very well on the
random Pi input, which was to be expected from a prefix
doubling algorithm. It was also fast on Wikipedia, but was
much slower on Gutenberg. Most remarkable, however, is
that it did not scale well on any input: while it was very
fast on Pi for a small number of hosts, on eight or more
its performance degraded quickly. On Wikipedia the suffix
sorting speed did not increase well when adding more hosts.
A possible reason is that the inputs and available RAM size
were too small for the algorithms to reach their full potential.
BKS.pDC3 and BKS.pDC7 incur the same problems as
FA.psac: their performance only increases slightly with more
hosts. However, their overall performance is more stable
across inputs due to the underlying difference cover algorithm.
While BKS.pDCX may suffer from some less well-engineered
implementation details, FA.psac is high quality code, which
makes its unfavorable scalability in a memory constrained
environment even more surprising and unlikely.

Let us now turn to the Thrill implementations. As discussed
earlier, T.PD-Window is limited in the window size by the
available RAM, and hence cannot sort inputs with long LCPs.
Both T.PD-Window and T.PD-Sort are slow on Gutenberg
and Wikipedia, but fast on Pi, again which is to be expected
from prefix doubling. T.PD-Window and T.PD-Sort are also
not able to sort large prefixes of Gutenberg and Wikipedia
on many hosts.
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Figure 1. Throughput of distributed suffix sorters with 1–32 hosts.

The three best algorithms are T.PD-Discard, T.DC3, and
T.DC7 which are able to process all inputs, except for the
very largest instances. The implementations fail with 32 GiB
on 32 hosts, probably because the amount of buffers and
metadata in Thrill grows too large for the limited RAM
available. Compared to T.PD-Window and T.PD-Sort, the
discarding optimization in T.PD-Discarding really makes
prefix doubling practical for larger inputs.

The throughput of all Thrill implementations increases
first with the input size and also with the number of hosts,
until the throughput starts dropping at 1–4 GiB size. The
turning point is when external memory usage starts to impact
sorting performance. This obviously must slow down the

Thrill implementations, however the NVMe SSDs are so fast
that the throughput only drops down to levels that many MPI
implementation reach with RAM.

On the input Pi, performance peaks at 1 GiB size, reaching
more than 95 MiB/s throughput with 32 hosts. For larger Pi
inputs, external memory usage increases, and throughput
drops to 25 MiB/s. Pi is the only input for which our
prefix doubling T.PD-Sort works well; the more complex
T.PD-Discard is second best and gains no advantage over
regular prefix doubling algorithms for this uniformly random
input. On Wikipedia and Gutenberg the picture changes
completely: unoptimized prefix doubling algorithms are much
slower and often even fail to sort the input. Clearly the best
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Figure 2. Weak scaling plots of distributed and of the fastest non-distributed suffix sorters run on one host with the same input size.

implementation for these inputs is T.DC7, which outperforms
on nearly all instance of Wikipedia and Gutenberg. T.DC3
appears to be slower by a constant factor, and T.PD-Discard
also performs very well, but with a different characteristic
than the difference cover algorithms.

To better compare the scalability properties, we present
weak scaling plots in Figure 2. These can be considered slices
of the previous diagrams: the left panels shows all experi-
ments with h ·256 MiB input per host and the right panels all
with h ·1 GiB per host. Only Thrill implementations function
properly with these parameters. Additionally, we include
results from the non-distributed algorithms M.divsufsort,
M.divsufsort.par, and M.sais. These run on only one host,
but with the same amount of input data as the distributed
experiments. As these three implementations are the fastest
non-distributed suffix sorters, we can determine the number
of hosts needed for distributed algorithms to outperform.

Despite the full 122 GB RAM available, M.divsufsort,
M.divsufsort.par, and M.sais could not suffix sort 16 GiB
inputs or larger, because the algorithms require at least
9n working space. M.sais failed even for 8 GiB due to
an unknown error in the program. T.DC7 outperformed
M.divsufsort on Gutenberg and Wikipedia with four hosts,
and on Pi T.PD-Discard outperformed already for two host.
Considering these numbers, one has to bear in mind, that
Thrill uses all 16 cores on the hosts, while M.divsufsort
only uses one. M.divsufsort.par uses OpenMP parallelism,
but that does not have a large impact. M.sais is slightly
faster than M.divsufsort on our inputs. Previous experiments
on the performance of big data frameworks [24] reported

“Configuration that Outperforms a Single Thread (COST)”
ratios of 16 to 512 for PageRank, and 10 to 100 for graph
connectivity. The COST ratio of our suffix sorters are thus 32–
64. However, we were unable to replicate the 110x speedup
reported for FA.psac [12] over M.divsufsort, probably due
to our cheaper commodity hardware.

V. CONCLUSIONS AND FUTURE WORK

We presented the implementation of five different suffix
array construction algorithms in Thrill showing that the
small set of algorithmic primitives provided by Thrill is
sufficient to express the algorithms within the framework. Our
experimental results demonstrate that algorithms implemented
in Thrill are competitive to hand-coded MPI implementations.
Furthermore, Thrill already has automatic external memory
support, hence our implementations are the first distributed
external memory suffix array construction algorithms.

While our experimental results are already impressive,
we believe that more future work should be directed at
improving efficiency of the underlying sorting algorithm
implementations in Thrill. The suffix sorting algorithms are
the most complex algorithms currently implemented in the
framework, and by improving their performance, all other
applications will also gain. In addition, one could extend
the SACAs with LCP array construction and the difference
cover algorithms with discarding tuples [25] similar to the
technique we applied to the prefix doubling algorithms.

And then one can turn to post-processing the suffix array
into other forms such as compressed indices, the FM-index,
or specific on-disk suffix array representations like RoSA [26].
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Implementing these efficiently and scalable using the Thrill
framework will open up new possibilities for applying
advanced text algorithms to large datasets.
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