43,624 research outputs found

    Resource allocation for transmit hybrid beamforming in decoupled millimeter wave multiuser-MIMO downlink

    Get PDF
    This paper presents a study on joint radio resource allocation and hybrid precoding in multicarrier massive multiple-input multiple-output communications for 5G cellular networks. In this paper, we present the resource allocation algorithm to maximize the proportional fairness (PF) spectral efficiency under the per subchannel power and the beamforming rank constraints. Two heuristic algorithms are designed. The proportional fairness hybrid beamforming algorithm provides the transmit precoder with a proportional fair spectral efficiency among users for the desired number of radio-frequency (RF) chains. Then, we transform the number of RF chains or rank constrained optimization problem into convex semidefinite programming (SDP) problem, which can be solved by standard techniques. Inspired by the formulated convex SDP problem, a low-complexity, two-step, PF-relaxed optimization algorithm has been provided for the formulated convex optimization problem. Simulation results show that the proposed suboptimal solution to the relaxed optimization problem is near-optimal for the signal-to-noise ratio SNR <= 10 dB and has a performance gap not greater than 2.33 b/s/Hz within the SNR range 0-25 dB. It also outperforms the maximum throughput and PF-based hybrid beamforming schemes for sum spectral efficiency, individual spectral efficiency, and fairness index

    Computational Design of Flexible Electride with Nontrivial Band Topology

    Full text link
    Electrides, with their excess electrons distributed in crystal cavities playing the role of anions, exhibit a variety of unique electronic and magnetic properties. In this work, we employ the first-principles crystal structure prediction to identify a new prototype of A3B electride in which both interlayer spacings and intralayer vacancies provide channels to accommodate the excess electrons in the crystal. This A3B type of structure is calculated to be thermodynamically stable for two alkaline metals oxides (Rb3O and K3O). Remarkably, the unique feature of multiple types of cavities makes the spatial arrangement of anionic electrons highly flexible via elastic strain engineering and chemical substitution, in contrast to the previously reported electrides characterized by a single topology of interstitial electrons. More importantly, our first-principles calculations reveal that Rb3O is a topological Dirac nodal line semimetal, which is induced by the band inversion at the general electronic k momentums in the Brillouin zone associated with the intersitial electric charges. The discovery of flexible electride in combining with topological electronic properties opens an avenue for electride design and shows great promises in electronic device applications

    Projection Methods: Swiss Army Knives for Solving Feasibility and Best Approximation Problems with Halfspaces

    Full text link
    We model a problem motivated by road design as a feasibility problem. Projections onto the constraint sets are obtained, and projection methods for solving the feasibility problem are studied. We present results of numerical experiments which demonstrate the efficacy of projection methods even for challenging nonconvex problems

    A Fast Eigen Solution for Homogeneous Quadratic Minimization with at most Three Constraints

    Full text link
    We propose an eigenvalue based technique to solve the Homogeneous Quadratic Constrained Quadratic Programming problem (HQCQP) with at most 3 constraints which arise in many signal processing problems. Semi-Definite Relaxation (SDR) is the only known approach and is computationally intensive. We study the performance of the proposed fast eigen approach through simulations in the context of MIMO relays and show that the solution converges to the solution obtained using the SDR approach with significant reduction in complexity.Comment: 15 pages, The same content without appendices is accepted and is to be published in IEEE Signal Processing Letter
    corecore