281,723 research outputs found

    Multidisciplinary analysis for highway engineering purposes

    Get PDF
    There are no author-identified significant results in this report

    Development of an undergraduate multidisciplinary engineering project

    Get PDF
    During their time at university it is necessary for undergraduate engineering students to develop not just technical skills related to their chosen engineering subject, but to also develop team working, time management, self organisation and decision making skills that will enable them to work effectively as engineers in the real world after graduation. These important transferable skills are highly sought after by industry and any chance to identify where such skills have been successfully used during an undergraduate degree course is a valuable addition to a student’s CV when subsequently entering the job market. To address the need of developing transferable skills, the School of Engineering and Design Multidisciplinary Project (MDP) was introduced in 2007 to provide first year undergraduate students with an opportunity to work together in multidisciplinary teams on a design and construction project. Each team is comprised of students from across the range of subject areas within the School and tasked with designing and building a robotic vehicle to tackle an obstacle course. The basis for the kits provided to each team are Lego Mindstorms robots for a majority of groups while the remaining groups are provided with a Parallax Basic STAMP 2 chip and a micro-controller chip to design their vehicle around. Figure 1 shows a selection of the 50 completed project builds from the 2009 MDP, showing the wide array of designs produced by the students. This paper describes the main aims of the MDP and gives an overview of how it has developed over the last three years to become a key part of the engineering undergraduate programme at Brunel University

    Teaching Software Engineering through Robotics

    Full text link
    This paper presents a newly-developed robotics programming course and reports the initial results of software engineering education in robotics context. Robotics programming, as a multidisciplinary course, puts equal emphasis on software engineering and robotics. It teaches students proper software engineering -- in particular, modularity and documentation -- by having them implement four core robotics algorithms for an educational robot. To evaluate the effect of software engineering education in robotics context, we analyze pre- and post-class survey data and the four assignments our students completed for the course. The analysis suggests that the students acquired an understanding of software engineering techniques and principles

    Multidisciplinary Engineering Systems 2nd and 3rd Year College-Wide Courses

    Get PDF
    Undergraduate engineering education today is ineffective in preparing students for multidisciplinary system integration and optimization - exactly what is needed by companies to become innovative and gain a competitive advantage in this global economy. While there is some movement in engineering education to change that, this change is not easy, as it involves a cultural change from the silo approach to a holistic approach. The ABET-required senior capstone multidisciplinary design course too often becomes a design-build-test exercise with the emphasis on just getting something done. Students rarely break out of their disciplinary comfort zone and thus fail to experience true multidisciplinary system design. What is needed are multidisciplinary systems courses, with a balance between theory and practice, between academic rigor and the best practices of industry, presented in an integrated way in the 2nd and 3rd years that prepares students for true multidisciplinary systems engineering at the senior level and beyond. The two courses presented here represent a significant curriculum improvement in response to this urgent need

    Multidisciplinary design optimization: An emerging new engineering discipline

    Get PDF
    This paper defines the Multidisciplinary Design Optimization (MDO) as a new field of research endeavor and as an aid in the design of engineering systems. It examines the MDO conceptual components in relation to each other and defines their functions

    System engineering approach applied to Galileo system

    Get PDF
    Developing a localization system, with more precise performances than GPS that guarantees Europe autonomy is a complex challenge that ESA and a large number of European economical actors of space industry were decided to meet. To design and manage such a huge system would have been impossible without applying System Engineering best practices, thanks to fundamental activities, multidisciplinary teams and dedicated tools. This paper gives an overview of the System Engineering approach applied to design and develop Galileo, the European Satellite Radio-Navigation System. Galileo system scope is so wide that we have decided to focus on some particular steps of the System Engineering processes that are: Requirements Engineering and Architec-ture. All along this paper, examples are given to illustrate the additional difficulties that have made Systems Engineering more and more complex

    Multidisciplinary analyses for highway engineering purposes

    Get PDF
    There are no author-identified significant results in this report

    Comparison of Direct Multiobjective Optimization Methods for the Design of Electric Vehicles

    Get PDF
    "System design oriented methodologies" are discussed in this paper through the comparison of multiobjective optimization methods applied to heterogeneous devices in electrical engineering. Avoiding criteria function derivatives, direct optimization algorithms are used. In particular, deterministic geometric methods such as the Hooke & Jeeves heuristic approach are compared with stochastic evolutionary algorithms (Pareto genetic algorithms). Different issues relative to convergence rapidity and robustness on mixed (continuous/discrete), constrained and multiobjective problems are discussed. A typical electrical engineering heterogeneous and multidisciplinary system is considered as a case study: the motor drive of an electric vehicle. Some results emphasize the capacity of each approach to facilitate system analysis and particularly to display couplings between optimization parameters, constraints, objectives and the driving mission

    Safe environments for innovation: developing a new multidisciplinary masters programme

    Get PDF
    This paper outlines the research and resulting curriculum design activities conducted as a collaborative venture between Northumbria University’s School of Design, School of Computing, Engineering and Information Sciences and Newcastle Business School undertaken in the creation of a new postgraduate programme in Multidisciplinary Design Innovation. With the area of multidisciplinary innovation education practice being comparatively new, the research conducted in support of the programme development was undertaken through a series of industry-linked pilot-study projects conducted with Philips, Hasbro, Lego and Unilever. The key finding from this research was an understanding of the importance of freeing students from different disciplines of the inhibitions that limit creativity in collaborative settings. This paper gives an account of the pilot studies and the associated learning derived from them, the collaborative development of the programme and approaches in curriculum and assessment design adopted in order to create what we call ‘safe environments for innovation’; environments designed to free students of these evident inhibitions
    corecore