1,808 research outputs found

    Development of in-cylinder injection for a hydrogen-fueled internal combustion engine

    Full text link
    Traditional means for converting an engine to operate on hydrogen fuel incorporates port injection. The typical method for controlling emissions on a port injection engine is to operate the engine lean (typical AFR of 70:1) and/or incorporate an EGR system. The result of utilizing these methods is an appreciable reduction in power output. In-cylinder injection of an internal combustion engine provides a reliable method for delivering hydrogen fuel whereby fuel efficiency, power output and emissions levels are improved. Injection of hydrogen directly into the combustion chamber allows control of various factors such as burn rate and combustion timing which influence the production of emissions in the form of NOx. Testing of the converted engines has also shown an increase in power due to an increase in volumetric efficiency and a reduction of emissions at near stoichiometric operation. Details for converting an engine to an in-cylinder hydrogen injection, computer systems control, emissions testing and performance evaluation are given

    Experimental and Numerical Analysis of Ethanol Fueled HCCI Engine

    Get PDF
    Presently, the research on the homogeneous charge compression ignition (HCCI) engines has gained importance in the field of automotive power applications due to its superior efficiency and low emissions compared to the conventional internal combustion (IC) engines. In principle, the HCCI uses premixed lean homogeneous charge that auto-ignites volumetrically throughout the cylinder. The homogeneous mixture preparation is the main key to achieve high fuel economy and low exhaust emissions from the HCCI engines. In the recent past, different techniques to prepare homogeneous mixture have been explored. The major problem associated with the HCCI is to control the auto-ignition over wide range of engine operating conditions. The control strategies for the HCCI engines were also explored. This dissertation investigates the utilization of ethanol, a potential major contributor to the fuel economy of the future. Port fuel injection (PFI) strategy was used to prepare the homogeneous mixture external to the engine cylinder in a constant speed, single cylinder, four stroke air cooled engine which was operated on HCCI mode. Seven modules of work have been proposed and carried out in this research work to establish the results of using ethanol as a potential fuel in the HCCI engine. Ethanol has a low Cetane number and thus it cannot be auto-ignited easily. Therefore, intake air preheating was used to achieve auto-ignition temperatures. In the first module of work, the ethanol fueled HCCI engine was thermodynamically analysed to determine the operating domain. The minimum intake air temperature requirement to achieve auto-ignition and stable HCCI combustion was found to be 130 °C. Whereas, the knock limit of the engine limited the maximum intake air temperature of 170 °C. Therefore, the intake air temperature range was fixed between 130-170 °C for the ethanol fueled HCCI operation. In the second module of work, experiments were conducted with the variation of intake air temperature from 130-170 °C at a regular interval of 10 °C. It was found that, the increase in the intake air temperature advanced the combustion phase and decreased the exhaust gas temperature. At 170 °C, the maximum combustion efficiency and thermal efficiency were found to be 98.2% and 43% respectively. The NO emission and smoke emissionswere found to be below 11 ppm and 0.1% respectively throughout this study. From these results of high efficiency and low emissions from the HCCI engine, the following were determined using TOPSIS method. They are (i) choosing the best operating condition, and (ii) which input parameter has the greater influence on the HCCI output. In the third module of work, TOPSIS - a multi-criteria decision making technique was used to evaluate the optimum operating conditions. The optimal HCCI operating condition was found at 70% load and 170 °C charge temperature. The analysis of variance (ANOVA) test results revealed that, the charge temperature would be the most significant parameter followed by the engine load. The percentage contribution of charge temperature and load were63.04% and 27.89% respectively. In the fourth module of work, the GRNN algorithm was used to predict the output parameters of the HCCI engine. The network was trained, validated, and tested with the experimental data sets. Initially, the network was trained with the 60% of the experimental data sets. Further, the validation and testing of the network was done with each 20% data sets. The validation results predicted that, the output parameters those lie within 2% error. The results also showed that, the GRNN models would be advantageous for network simplicity and require less sparse data. The developed new tool efficiently predicted the relation between the input and output parameters. In the fifth module of work, the EGR was used to control the HCCI combustion. An optimum of 5% EGR was found to be optimum, further increase in the EGR caused increase in the hydrocarbon (HC) emissions. The maximum brake thermal efficiency of 45% was found for 170 °C charge temperature at 80% engine load. The NO emission and smoke emission were found to be below 10 ppm and 0.61% respectively. In the sixth module of work, a hybrid GRNN-PSO model was developed to optimize the ethanol-fueled HCCI engine based on the output performance and emission parameters. The GRNN network interpretive of the probability estimate such that it can predict the performance and emission parameters of HCCI engine within the range of input parameters. Since GRNN cannot optimize the solution, and hence swarm based adaptive mechanism was hybridized. A new fitness function was developed by considering the six engine output parameters. For the developed fitness function, constrained optimization criteria were implemented in four cases. The optimum HCCI engine operating conditions for the general criteria were found to be 170 °C charge temperature, 72% engine load, and 4% EGR. This model consumed about 60-75 ms for the HCCI engine optimization. In the last module of work, an external fuel vaporizer was used to prepare the ethanol fuel vapour and admitted into the HCCI engine. The maximum brake thermal efficiency of 46% was found for 170 °C charge temperature at 80% engine load. The NO emission and smoke emission were found to be below 5 ppm and 0.45% respectively. Overall, it is concluded that, the HCCI combustion of sole ethanol fuel is possible with the charge heating only. The high load limit of HCCI can be extended with ethanol fuel. High thermal efficiency and low emissions were possible with ethanol fueled HCCI to meet the current demand

    ANALYSIS OF ENGINE CHARACTERISTICS AND EMISSIONS FUELED BY IN-SITU MIXING OF SMALL AMOUNT OF HYDROGEN IN COMPRESSED NATURAL GAS

    Get PDF
    The use of gaseous fuels in internal combustion engines has long been observed as a possible method of reducing emissions while maintaining engine performance and efficiency. Most of the research interests is focused on the use of compressed natural gas as alternative fuel, mainly due to its wide availability, high thermal efficiency and lower exhaust emissions compared to other hydrocarbon fuels. But compressed natural gas has the penalty of slow burning velocity and poor lean burn ability. One effective way to solve this problem is to mix the compressed natural gas with a fuel that possesses the high burning velocity. Hydrogen is the best additive candidate to natural gas due to its unique characteristics in promoting flame propagation speed, which stabilizes the combustion process. This research investigated the engine characteristics and emissions of a CNG-DI engine fueled by low levels of hydrogen enrichment (lower than 10%) in CNG utilizing an in-situ mixing system. Prior to the main experiment, two pre-experiments were conducted to determine the best and most suitable parameters for optimization of engine performance, combustion as well as emissions. The first experiment was to determine the suitable injector type to be used, and it was found that the wide cone angle injector of 70o was better for the applications. The second experiment was to determine the suitable injection timing, and it was discovered that the earlier injection timing was the best for this work. In this research, the engine used was a 4-stroke single cylinder, with a swept volume of 399.25 cc and a compression ratio of 14:1. The injection timing was set to 300o crank angle before top dead center as determined in the pre-experiment; the engine speed from 2000 to 4000 rpm and the spark timing for all the operating conditions were set to maximum brake torque. All the experiments were conducted at full load and relative air-fuel ratio λ =1.0. The injection pressure was fixed at 14 bar for all the cases. The findings revealed that the brake torque, brake power and brake mean effective pressure increased with the increase of hydrogen fraction at low and medium engine speeds. The brake specific energy consumption decreased and brake thermal efficiency increased with the increase of hydrogen percentage. In general, significant changes have been observed with the engine characteristics at low engine speed but the rate of increase/decrease of the parameters decreased was less significant with the addition of higher percentages of hydrogen as well as with the increase in engine speeds. For all the cases, the cylinder pressure and the heat release rate increased while the flame developement and rapid combustion duration decreased with the increase in the amount of hydrogen in the blends. The phenomenon was more obvious at the low engine speed, suggesting that the effect of hydrogen addition in the enhancement of burning velocity plays more important role at relatively low cylinder air motion. Exhaust THC, CO and CO2 concentrations decreased with the increase of hydrogen fraction due to the increase in hydrogen to carbon ratio (H/C). However, the variation in the NOx emissions was found to be negligible with the addition of hydrogen

    A review of water injection applied on the internal combustion engine

    Get PDF
    As a promising technique to reduce the in-cylinder temperature and exhaust temperature, mitigate combustion knock, improve combustion phasing and decrease NOx emissions, water injection applied on different types of engines has attracted extensive attention in recent years to further improve fuel economy and fulfill stricter emission regulations. Since mechanisms of water injection with different aims are distinct, benefits on engine performances and emissions are also varied. This paper intends to give a comprehensive review of water injection applied on the internal combustion engine. First, different implementations of water injection are introduced, followed by a detailed description of water evaporation processes. Second, mechanisms of the in-cylinder combustion process with water addition are discussed with respect to the heat release rate, knock tendency and emission formations. Next, recent works of water injection applied on different kinds of engines are reviewed with special attentions given to the comparisons of different implementations and injection parameters. Furthermore, comparisons and combinations of water injection with other advanced engine techniques are summarized. Finally, critical issues of current research on the water injection technique are discussed.</p

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    Comprehensive analysis of the combustion of low carbon fuels (hydrogen, methane and coke oven gas) in a spark ignition engine through CFD modeling

    Get PDF
    The use of low carbon fuels (LCFs) in internal combustion engines is a promising alternative to reduce pollution while achieving high performance through the conversion of the high energy content of the fuels into mechanical energy. However, optimizing the engine design requires deep knowledge of the complex phenomena involved in combustion that depend on the operating conditions and the fuel employed. In this work, computational fluid dynamics (CFD) simulation tools have been used to get insight into the performance of a Volkswagen Polo 1.4L port-fuel injection spark ignition engine that has been fueled with three different LCFs, coke oven gas (COG), a gaseous by-product of coke manufacture, H2 and CH4. The comparison is made in terms of power, pressure, temperature, heat release, flame growth speed, emissions and volumetric efficiency. Simulations in Ansys® Forte® were validated with experiments at the same operating conditions with optimal spark advance, wide open throttle, a wide range of engine speed (2000–5000 rpm) and air-fuel ratio (λ) between 1 and 2. A sensitivity analysis of spark timing has been added to assess its impact on combustion variables. COG, with intermediate flame growth speed, produced the greatest power values but with lower pressure and temperature values at λ = 1.5, reducing the emissions of NO and the wall heat transfer. The useful energy released with COG was up to 16.5% and 5.1% higher than CH4 and H2, respectively. At richer and leaner mixtures (λ = 1 and λ = 2), similar performances were obtained compared to CH4 and H2, combining advantages of both pure fuels and widening the λ operation range without abnormal combustion. Therefore, suitable management of the operating conditions maximizes the conversion of the waste stream fuel energy into useful energy while limiting emissions.This research was supported by the Project, “HYLANTIC”- EAPA_204/2016, co-financed by the European Regional Development Fund within the framework of the Interreg Atlantic program and the Spanish Ministry of Science, Innovation and Universities (Project: RTI2018-093310-B-I00). Rafael Ortiz-Imedio thanks the Concepción Arenal postgraduate research grant from the University of Cantabria. The authors acknowledge Santander Supercomputación support group at the University of Cantabria who provided access to the supercomputer Altamira Supercomputer at the Institute of Physics of Cantabria (IFCA-CSIC), member of the Spanish Supercomputing Network, for performing simulations. The authors also acknowledge the help provided for the model development by the Engineering Department from the Public University of Navarre in Pamplona

    Alternative Fuels for Diesel Engines: New Frontiers

    Get PDF
    The world at present is mainly dependent upon petroleum-derived fuels for meeting its energy requirement. However, perturbation in crude prices, which concerns about long-term availability of these fuels coupled with environmental degradation due to their combustion, has put renewable alternative fuels on the forefront of policy maker’s agenda. The diesel engines are considered workhorse in the global economy due to better thermal efficiency, ruggedness, and load carrying capacity. They, however, are also the main contributor to air pollution as they emit more oxides of nitrogen, suspended particulate matter as compared to gasoline engines. The most potential fuel either to supplement or to substitute diesel is biodiesel, butanol, producer gas, dimethyl ether, hydrogen, and so on. This chapter presents the developments about the use of alternative fuels in diesel engines. The exhaustive literature has evolved the main trends in the development of alternative fuels around the world. The chapter also describes the research directions on production and use of alternative fuels in off-road and transport vehicles powered by diesel engines

    Combustion and emission characteristics of IC engines fueled by hydrogen and hydrogen/diesel mixtures and multi-objective optimization of operating parameters

    Get PDF
    “The present study considers combustion of hydrogen in IC engines. In general, the work focuses on simulating the engine performance and emissions at different operation parameters, and using optimization techniques. Task I work deals with the engine performance and emissions of a single cylinder spark-ignition (SI) engine fueled by hydrogen. The engine was simulated at different equivalence ratios, exhaust gas recirculation (EGR) and ignition timing. The results indicate that NOx emissions, engine power, and efficiency are reduced by increasing EGR level, and increased with increasing equivalence ratio and advanced ignition timing. The best operating conditions for hydrogen engines were obtained by solving the multi-objective problem of maximizing engine power and efficiency while minimizing the NOx. Task II deals with the engine performance and emissions of dual-fuel CI engines fueled by a hydrogen/diesel mixture. The engine was simulated under conditions of various hydrogen levels (%) by energy, diesel injection timing, and EGR levels (%). More hydrogen present inside the engine cylinder led to lower soot emissions, higher thermal efficiency, and higher NOx emissions. Ignition timing delayed as the hydrogen rate increased, due to a delay in OH radical formation. Exhaust gas recirculation (EGR) method and diesel injection timing were considered as well, due to their potential effects on the engine outputs. To obtain the best possible maximum efficiency along with lower NOx and soot emissions, optimization methods in (Task III) for the operating parameters were considered. Multi-objective problem with conflicting objectives was solved by using regression analysis, artificial neural networks, and genetic algorithms”--Abstract, page iv

    Hydrogen double compression-expansion engine (H2DCEE): A sustainable internal combustion engine with 60%+ brake thermal efficiency potential at 45 bar BMEP

    Get PDF
    Hydrogen (H-2) internal combustion engines may represent cost-effective and quick solution to the issue of the road transport decarbonization. A major factor limiting their competitiveness relative to fuel cells (FC) is the lower efficiency. The present work aims to demonstrate the feasibility of a H-2 engine with FC-like 60%+ brake thermal efficiency (BTE) levels using a double compression-expansion engine (DCEE) concept combined with a high pressure direct injection (HPDI) nonpremixed H-2 combustion. Experimentally validated 3D CFD simulations are combined with 1D GT-Power simulations to make the predictions. Several modifications to the system design and operating conditions are systematically implemented and their effects are investigated. Addition of a catalytic burner in the combustor exhaust, insulation of the expander, dehumidification of the EGR, and removal of the intercooling yielded 1.5, 1.3, 0.8, and 0.5%-point BTE improvements, respectively. Raising the peak pressure to 300 bar via a larger compressor further improved the BTE by 1.8%-points but should be accompanied with a higher injector-cylinder differential pressure. The lambda of ~1.4 gave the optimum tradeoff between the mechanical and combustion efficiencies. A peak BTE of 60.3% is reported with H2DCEE, which is ~5%-points higher than the best diesel-fueled DCEE alternative
    corecore