22 research outputs found

    Enforcing Perceptual Consistency on Generative Adversarial Networks by Using the Normalised Laplacian Pyramid Distance

    Get PDF
    In recent years there has been a growing interest in image generation through deep learning. While an important part of the evaluation of the generated images usually involves visual inspection, the inclusion of human perception as a factor in the training process is often overlooked. In this paper we propose an alternative perceptual regulariser for image-to-image translation using conditional generative adversarial networks (cGANs). To do so automatically (avoiding visual inspection), we use the Normalised Laplacian Pyramid Distance (NLPD) to measure the perceptual similarity between the generated image and the original image. The NLPD is based on the principle of normalising the value of coefficients with respect to a local estimate of mean energy at different scales and has already been successfully tested in different experiments involving human perception. We compare this regulariser with the originally proposed L1 distance and note that when using NLPD the generated images contain more realistic values for both local and global contrast. We found that using NLPD as a regulariser improves image segmentation accuracy on generated images as well as improving two no-reference image quality metrics

    Learning GAN-based Foveated Reconstruction to Recover Perceptually Important Image Features

    Get PDF
    A foveated image can be entirely reconstructed from a sparse set of samples distributed according to the retinal sensitivity of the human visual system, which rapidly decreases with increasing eccentricity. The use of Generative Adversarial Networks has recently been shown to be a promising solution for such a task, as they can successfully hallucinate missing image information. As in the case of other supervised learning approaches, the definition of the loss function and the training strategy heavily influence the quality of the output. In this work,we consider the problem of efficiently guiding thetraining of foveated reconstruction techniques such that they are more aware of the capabilities and limitations of the human visual system, and thus can reconstruct visually important image features. Our primary goal is to make the training procedure less sensitive to distortions that humans cannot detect and focus on penalizing perceptually important artifacts. Given the nature of GAN-based solutions, we focus on the sensitivity of human vision to hallucination in case of input samples with different densities. We propose psychophysical experiments, a dataset, and a procedure for training foveated image reconstruction. The proposed strategy renders the generator network flexible by penalizing only perceptually important deviations in the output. As a result, the method emphasized the recovery of perceptually important image features. We evaluated our strategy and compared it with alternative solutions by using a newly trained objective metric, a recent foveated video quality metric, and user experiments. Our evaluations revealed significant improvements in the perceived image reconstruction quality compared with the standard GAN-based training approach

    Learning Foveated Reconstruction to Preserve Perceived Image Statistics

    Get PDF
    Foveated image reconstruction recovers full image from a sparse set of samples distributed according to the human visual system's retinal sensitivity that rapidly drops with eccentricity. Recently, the use of Generative Adversarial Networks was shown to be a promising solution for such a task as they can successfully hallucinate missing image information. Like for other supervised learning approaches, also for this one, the definition of the loss function and training strategy heavily influences the output quality. In this work, we pose the question of how to efficiently guide the training of foveated reconstruction techniques such that they are fully aware of the human visual system's capabilities and limitations, and therefore, reconstruct visually important image features. Due to the nature of GAN-based solutions, we concentrate on the human's sensitivity to hallucination for different input sample densities. We present new psychophysical experiments, a dataset, and a procedure for training foveated image reconstruction. The strategy provides flexibility to the generator network by penalizing only perceptually important deviations in the output. As a result, the method aims to preserve perceived image statistics rather than natural image statistics. We evaluate our strategy and compare it to alternative solutions using a newly trained objective metric and user experiments

    Learning models for intelligent photo editing

    Get PDF

    Towards robust convolutional neural networks in challenging environments

    Get PDF
    Image classification is one of the fundamental tasks in the field of computer vision. Although Artificial Neural Network (ANN) showed a lot of promise in this field, the lack of efficient computer hardware subdued its potential to a great extent. In the early 2000s, advances in hardware coupled with better network design saw the dramatic rise of Convolutional Neural Network (CNN). Deep CNNs pushed the State-of-The-Art (SOTA) in a number of vision tasks, including image classification, object detection, and segmentation. Presently, CNNs dominate these tasks. Although CNNs exhibit impressive classification performance on clean images, they are vulnerable to distortions, such as noise and blur. Fine-tuning a pre-trained CNN on mutually exclusive or a union set of distortions is a brute-force solution. This iterative fine-tuning process with all known types of distortion is, however, exhaustive and the network struggles to handle unseen distortions. CNNs are also vulnerable to image translation or shift, partly due to common Down-Sampling (DS) layers, e.g., max-pooling and strided convolution. These operations violate the Nyquist sampling rate and cause aliasing. The textbook solution is low-pass filtering (blurring) before down-sampling, which can benefit deep networks as well. Even so, non-linearity units, such as ReLU, often re-introduce the problem, suggesting that blurring alone may not suffice. Another important but under-explored issue for CNNs is unknown or Open Set Recognition (OSR). CNNs are commonly designed for closed set arrangements, where test instances only belong to some ‘Known Known’ (KK) classes used in training. As such, they predict a class label for a test sample based on the distribution of the KK classes. However, when used under the OSR setup (where an input may belong to an ‘Unknown Unknown’ or UU class), such a network will always classify a test instance as one of the KK classes even if it is from a UU class. Historically, CNNs have struggled with detecting objects in images with large difference in scale, especially small objects. This is because the DS layers inside a CNN often progressively wipe out the signal from small objects. As a result, the final layers are left with no signature from these objects leading to degraded performance. In this work, we propose solutions to the above four problems. First, we improve CNN robustness against distortion by proposing DCT based augmentation, adaptive regularisation, and noise suppressing Activation Functions (AF). Second, to ensure further performance gain and robustness to image transformations, we introduce anti-aliasing properties inside the AF and propose a novel DS method called blurpool. Third, to address the OSR problem, we propose a novel training paradigm that ensures detection of UU classes and accurate classification of the KK classes. Finally, we introduce a novel CNN that enables a deep detector to identify small objects with high precision and recall. We evaluate our methods on a number of benchmark datasets and demonstrate that they outperform contemporary methods in the respective problem set-ups.Doctor of Philosoph

    On Improving Generalization of CNN-Based Image Classification with Delineation Maps Using the CORF Push-Pull Inhibition Operator

    Get PDF
    Deployed image classification pipelines are typically dependent on the images captured in real-world environments. This means that images might be affected by different sources of perturbations (e.g. sensor noise in low-light environments). The main challenge arises by the fact that image quality directly impacts the reliability and consistency of classification tasks. This challenge has, hence, attracted wide interest within the computer vision communities. We propose a transformation step that attempts to enhance the generalization ability of CNN models in the presence of unseen noise in the test set. Concretely, the delineation maps of given images are determined using the CORF push-pull inhibition operator. Such an operation transforms an input image into a space that is more robust to noise before being processed by a CNN. We evaluated our approach on the Fashion MNIST data set with an AlexNet model. It turned out that the proposed CORF-augmented pipeline achieved comparable results on noise-free images to those of a conventional AlexNet classification model without CORF delineation maps, but it consistently achieved significantly superior performance on test images perturbed with different levels of Gaussian and uniform noise
    corecore