962 research outputs found

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    A Review of Wireless Sensor Networks with Cognitive Radio Techniques and Applications

    Get PDF
    The advent of Wireless Sensor Networks (WSNs) has inspired various sciences and telecommunication with its applications, there is a growing demand for robust methodologies that can ensure extended lifetime. Sensor nodes are small equipment which may hold less electrical energy and preserve it until they reach the destination of the network. The main concern is supposed to carry out sensor routing process along with transferring information. Choosing the best route for transmission in a sensor node is necessary to reach the destination and conserve energy. Clustering in the network is considered to be an effective method for gathering of data and routing through the nodes in wireless sensor networks. The primary requirement is to extend network lifetime by minimizing the consumption of energy. Further integrating cognitive radio technique into sensor networks, that can make smart choices based on knowledge acquisition, reasoning, and information sharing may support the network's complete purposes amid the presence of several limitations and optimal targets. This examination focuses on routing and clustering using metaheuristic techniques and machine learning because these characteristics have a detrimental impact on cognitive radio wireless sensor node lifetime

    Survey on Various Aspects of Clustering in Wireless Sensor Networks Employing Classical, Optimization, and Machine Learning Techniques

    Get PDF
    A wide range of academic scholars, engineers, scientific and technology communities are interested in energy utilization of Wireless Sensor Networks (WSNs). Their extensive research is going on in areas like scalability, coverage, energy efficiency, data communication, connection, load balancing, security, reliability and network lifespan. Individual researchers are searching for affordable methods to enhance the solutions to existing problems that show unique techniques, protocols, concepts, and algorithms in the wanted domain. Review studies typically offer complete, simple access or a solution to these problems. Taking into account this motivating factor and the effect of clustering on the decline of energy, this article focuses on clustering techniques using various wireless sensor networks aspects. The important contribution of this paper is to give a succinct overview of clustering

    Metaheuristics Techniques for Cluster Head Selection in WSN: A Survey

    Get PDF
    In recent years, Wireless sensor communication is growing expeditiously on the capability to gather information, communicate and transmit data effectively. Clustering is the main objective of improving the network lifespan in Wireless sensor network. It includes selecting the cluster head for each cluster in addition to grouping the nodes into clusters. The cluster head gathers data from the normal nodes in the cluster, and the gathered information is then transmitted to the base station. However, there are many reasons in effect opposing unsteady cluster head selection and dead nodes. The technique for selecting a cluster head takes into factors to consider including residual energy, neighbors’ nodes, and the distance between the base station to the regular nodes. In this study, we thoroughly investigated by number of methods of selecting a cluster head and constructing a cluster. Additionally, a quick performance assessment of the techniques' performance is given together with the methods' criteria, advantages, and future directions

    Intelligent MANET optimisation system

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.In the literature, various Mobile Ad hoc NETwork (MANET) routing protocols proposed. Each performs the best under specific context conditions, for example under high mobility or less volatile topologies. In existing MANET, the degradation in the routing protocol performance is always associated with changes in the network context. To date, no MANET routing protocol is able to produce optimal performance under all possible conditions. The core aim of this thesis is to solve the routing problem in mobile Ad hoc networks by introducing an optimum system that is in charge of the selection of the running routing protocol at all times, the system proposed in this thesis aims to address the degradation mentioned above. This optimisation system is a novel approach that can cope with the network performance’s degradation problem by switching to other routing protocol. The optimisation system proposed for MANET in this thesis adaptively selects the best routing protocol using an Artificial Intelligence mechanism according to the network context. In this thesis, MANET modelling helps in understanding the network performance through different contexts, as well as the models’ support to the optimisation system. Therefore, one of the main contributions of this thesis is the utilisation and comparison of various modelling techniques to create representative MANET performance models. Moreover, the proposed system uses an optimisation method to select the optimal communication routing protocol for the network context. Therefore, to build the proposed system, different optimisation techniques were utilised and compared to identify the best optimisation technique for the MANET intelligent system, which is also an important contribution of this thesis. The parameters selected to describe the network context were the network size and average mobility. The proposed system then functions by varying the routing mechanism with the time to keep the network performance at the best level. The selected protocol has been shown to produce a combination of: higher throughput, lower delay, fewer retransmission attempts, less data drop, and lower load, and was thus chosen on this basis. Validation test results indicate that the identified protocol can achieve both a better network performance quality than other routing protocols and a minimum cost function of 4.4%. The Ad hoc On Demand Distance Vector (AODV) protocol comes in second with a cost minimisation function of 27.5%, and the Optimised Link State Routing (OLSR) algorithm comes in third with a cost minimisation function of 29.8%. Finally, The Dynamic Source Routing (DSR) algorithm comes in last with a cost minimisation function of 38.3%

    Bibliometric Analysis of Firefly Algorithm Applications in the Field of Wireless Sensor Networks

    Get PDF
    Wireless Sensor Network is a network of wireless sensor nodes that are capable of sensing information from their surroundings and transmit the sensed information to data collection point known as a base station. Applications of wireless sensor networks are large in number and forest fire detection, landslide monitoring, etc. are few applications to note. The research challenges in wireless sensor networks is the transmission of data from the sensor node to the base station in an energy-efficient manner and network life prolongation. Cluster-based routing techniques are extensively adopted to address this research challenge. Researchers have used different metaheuristic and soft computing techniques for designing such energy-efficient routing techniques. In the literature, a lot of survey article on cluster-based routing methods are available, but there is no bibliometric analysis conducted so far. Hence in this research article, bibliometric study with the focus on the firefly algorithm and its applications in wireless sensor network is undertaken. The purpose of this article is to explore the nature of research conducted concerning to authors, the connection between keywords, the importance of journals and scope for further research in soft computing based clustered routing methods. A detailed bibliometric analysis is carried out by collecting the details of published articles from the Scopus database. In this article, the collected data is articulated in terms of yearly document statistics, key affiliations of authors, contributing geographical locations, subject area statistics, author-keyword mapping, and many more essential aspects of bibliometric analysis. The conducted study helped in understanding that there is a vast scope for the research community to perform research work concerning firefly algorithm applications in the field of wireless sensor networks

    Swarm intelligence and its applications to wireless ad hoc and sensor networks.

    Get PDF
    Swarm intelligence, as inspired by natural biological swarms, has numerous powerful properties for distributed problem solving in complex real world applications such as optimisation and control. Swarm intelligence properties can be found in natural systems such as ants, bees and birds, whereby the collective behaviour of unsophisticated agents interact locally with their environment to explore collective problem solving without centralised control. Recent advances in wireless communication and digital electronics have instigated important changes in distributed computing. Pervasive computing environments have emerged, such as large scale communication networks and wireless ad hoc and sensor networks that are extremely dynamic and unreliable. The network management and control must be based on distributed principles where centralised approaches may not be suitable for exploiting the enormous potential of these environments. In this thesis, we focus on applying swarm intelligence to the wireless ad hoc and sensor networks optimisation and control problems. Firstly, an analysis of the recently proposed particle swarm optimisation, which is based on the swarm intelligence techniques, is presented. Previous stability analysis of the particle swarm optimisation was restricted to the assumption that all of the parameters are non random since the theoretical analysis with the random parameters is difficult. We analyse the stability of the particle dynamics without these restrictive assumptions using Lyapunov stability and passive systems concepts. The particle swarm optimisation is then used to solve the sink node placement problem in sensor networks. Secondly, swarm intelligence based routing methods for mobile ad hoc networks are investigated. Two protocols have been proposed based on the foraging behaviour of biological ants and implemented in the NS2 network simulator. The first protocol allows each node in the network to choose the next node for packets to be forwarded on the basis of mobility influenced routing table. Since mobility is one of the most important factors for route changes in mobile ad hoc networks, the mobility of the neighbour node using HELLO packets is predicted and then translated into a pheromone decay as found in natural biological systems. The second protocol uses the same mechanism as the first, but instead of mobility the neighbour node remaining energy level and its drain rate are used. The thesis clearly shows that swarm intelligence methods have a very useful role to play in the management and control iv problems associated with wireless ad hoc and sensor networks. This thesis has given a number of example applications and has demonstrated its usefulness in improving performance over other existing methods
    • …
    corecore