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Abstract 
In the literature, various Mobile Ad hoc NETwork (MANET) routing protocols proposed. Each performs 

the best under specific context conditions, for example under high mobility or less volatile topologies. In 

existing MANET, the degradation in the routing protocol performance is always associated with changes 

in the network context. To date, no MANET routing protocol is able to produce optimal performance 

under all possible conditions.  

The core aim of this thesis is to solve the routing problem in mobile Ad hoc networks by introducing an 

optimum system that is in charge of the selection of the running routing protocol at all times, the system 

proposed in this thesis aims to address the degradation mentioned above. This optimisation system is a 

novel approach that can cope with the network performance’s degradation problem by switching to other 

routing protocol. The optimisation system proposed for MANET in this thesis adaptively selects the best 

routing protocol using an Artificial Intelligence mechanism according to the network context. 

In this thesis, MANET modelling helps in understanding the network performance through different 

contexts, as well as the models’ support to the optimisation system. Therefore, one of the main 

contributions of this thesis is the utilisation and comparison of various modelling techniques to create 

representative MANET performance models. Moreover, the proposed system uses an optimisation method 

to select the optimal communication routing protocol for the network context. Therefore, to build the 

proposed system, different optimisation techniques were utilised and compared to identify the best 

optimisation technique for the MANET intelligent system, which is also an important contribution of this 

thesis.  

The parameters selected to describe the network context were the network size and average mobility. The 

proposed system then functions by varying the routing mechanism with the time to keep the network 

performance at the best level. The selected protocol has been shown to produce a combination of: higher 

throughput, lower delay, fewer retransmission attempts, less data drop, and lower load, and was thus 

chosen on this basis. Validation test results indicate that the identified protocol can achieve both a better 

network performance quality than other routing protocols and a minimum cost function of 4.4%. The Ad 

hoc On Demand Distance Vector (AODV) protocol comes in second with a cost minimisation function of 

27.5%, and the Optimised Link State Routing (OLSR) algorithm comes in third with a cost minimisation 

function of 29.8%. Finally, The Dynamic Source Routing (DSR) algorithm comes in last with a cost 

minimisation function of 38.3%. 
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Chapter 1 

Introduction 

1.1 Introduction 

Day after day, wired networks are handing out other applications to wireless networks that provide similar 

services to wired networks with unique mobility characteristics. Wireless networks are quickly emerging 

as an important innovation and becoming an essential component of contemporary daily life. The wireless 

network is ideal in that it not only fulfils an entire set of user requirements, but also provides service at an 

acceptable standard. 

Mobile Ad hoc NETwork (MANET) [1] is a self-configured infrastructure-less network of wireless 

mobile devices. This network has great advantages during national crises, disaster relief, and rescue 

operations. With wireless networks, the set of mobile nodes at arbitrarily locations can be interconnected 

through routing protocols. Therefore, a large number of routing protocols have been proposed to support 

the communications in MANET. Many protocols were developed, and many techniques from other 

disciplines were also utilised to create new routing protocols to achieve the user and the network 

requirements. However, until now there has been no optimal protocol(s) that is expected to produce good 

performance in all network contexts, as each protocol was developed based on particular assumptions. 

This thesis starts by presenting a survey of the various MANET routing protocol classifications to provide 

a better understanding of the MANET routing protocols. Then, a survey of optimisation techniques 

implemented in MANET routing protocols is given to describe the pervious attempts in routing 

optimisation. Thereafter, a novel design for an optimisation system is presented to allow the optimisation 

of the proposed network. In addition, those Artificial Intelligence (AI) techniques applicable to the 

problem are also reviewed. Finally, as is the goal of this thesis, a MANET routing protocols optimisation 

system for wireless communication networks, based on the aforementioned AI techniques, is developed. 

In this chapter, an overview of the entire thesis will be provided. The motivation for the research is briefly 

presented in Section 1.2, with the research’s overall aim and objectives identified in Section 1.3. Next, 

technical challenges are highlighted by Section 1.4. The main scientific contributions are then presented in 

Section 1.5, and the thesis’ scope detailed in Section 1.6. Finally, this chapter is concluded with an outline 

of the thesis in Section 1.7. 
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1.2 Motivation 

Two issues are considered in this research as the motivation behind designing an optimisation system for 

MANET routing protocols. The first issue is related to wireless networks in general, and the second is 

related to the particular area in MANET, that is the routing problem, as described below. 

1.2.1 Better MANET 

The research in MANETs should grow to match the rapid evolution of wireless communication 

technologies. Providing the users with acceptable levels of service is a goal which will have to be met by 

research into MANET optimisation. 

 

1.2.2 MANET Routing Problems 

In MANET, each node has the freedom to join, leave, and move around the network. This movement 

creates a highly dynamic environment that effects packet routing. Therefore, efficient packet routing is 

one of the most challenging problems in MANETs. The objective of routing is to guide packets through 

the communication subnet to their final destinations. As a result of working on this problem, numerous 

routing protocols [1]-[6] have been proposed in the literature. The aim is to find the most suitable path 

from source to destination, with the ultimate goal being to establish efficient route and efficient message 

exchange within MANET. 

The most suitable path could be either the shortest path [7], which can be selected from multi-paths, or the 

reliable path  [8], which has less congestion and a more stable network connection. However, there are still 

two other major problems with the current MANET routing schemes, as described by the following. 

First, each identified routing protocol addresses the objectives of its development 

From the literature reviewed, it can be concluded that the mobility causes frequent changes in MANETs 

topology which have led to the design of various routing schemes, with each scheme aiming at a particular 

type of MANET topology. Each protocol has different objectives and focuses on solving the problems for 

the definite context conditions. For example, before designing a routing protocol, the network should be 

identified as a flat or cluster mobile network, and also have a particular network mobility level (low, 

medium, or high). 

The above means that each routing protocol is specifically designed to achieve high performance in a 

particular MANET context. Heretofore, to the best of our knowledge, there is no optimum routing 
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protocol that can handle all expected network context changes and is proven to maintain an optimum 

network performance given these changes. However, there are many protocols that can be optimal for a 

specific situation. 

Several performance simulations, comparisons, and evaluations [9]-[16] were done to judge the routing 

protocols behaviour within different contexts, proving that some routing protocols could not maintain the 

network performance at an acceptable level with the changes in the context. For example, a protocol that 

is designed for a small network is not good for a large network, and the protocol that is designed for low 

mobility is, predictably, often poor for high mobility situations. 

Second, during a MANET life cycle, only one routing protocol can be utilised. 

The routing protocol responsibility is not only restricted by the need to connect MANET nodes together 

for communication, but also to keep the communication flowing at an acceptable level at all times. For 

instance, consider a MANET that starts with a large number of nodes in low mobility. A routing protocol 

R1, which was designed with such a context in mind, successfully maintains the optimum performance. 

However, consider now that due to certain circumstances, the number of nodes drops dramatically while 

node mobility rises sharply (a typical scenario in many emergency situations), resulting in a severe 

degradation of protocol R1 performance. However, the existing MANET routing protocol R2, which was 

designed with the latter scenario in mind, cannot be deployed to help in this situation as the MANET is 

already running with R1. 

As such, a MANET that employs a specific routing protocol cannot benefit from the advantages of other 

routing protocols given changing conditions. In the performance evaluation literature [9]-[16], a selected 

group of routing protocols with the same network characteristics were compared. Each protocol’s 

respective strengths and weaknesses were then identified and explained. This literature focused on 

evaluating the protocols without suggesting any solution when the protocol degraded, although 

comparisons of weaknesses and strengths were also made. Nonetheless, this literature has proven to be a 

useful source of information for users of a network with the same routing characteristics who wish to 

avoid protocol weakness  

It is important to note that, heretofore, there has been no effort to comprehensively list all of the available 

routing protocols and evaluate them with the same performance parameters. 

 



_____________________________________________________________________4 

 

1.3 Research Aim and Objectives 

The overall aim of this thesis is to design and develop a novel intelligent routing protocol optimisation 

system to be implemented in a mobile Ad hoc network. The goals of this research are addressed through 

the following objectives: 

1. Review and study MANET routing protocols to gain an understanding of issues associated with this 

field; 

2. Survey the optimisation techniques that have been implemented in Ad hoc routing protocols to identify 

the related optimised network with the proposed intelligent optimised system; 

3. Review the area of Artificial Intelligence techniques to understand their principles and operations, as 

applied to the subject of this study; 

4. Develop an architectural design for a communication network monitoring system that incorporates a 

context-aware intelligent selection module; 

5. Build the proposed system, which involves five tasks; 

a. Create the references (data) needed that represent MANET performance. This objective will be 

achieved through creating a group of simulations with the support of the OpnetTM14 software package; 

the results of the simulation will then be collected and arranged to create models with the support of 

the MATLABTM software package. 

b. Investigate and study a group of modelling techniques with the support of the MATLABTM software 

package and Essential Regression software package, and then select the most appropriate one. 

c. Investigate and study a group of optimisation techniques with the support of the MATLABTM 

software package and then select the most appropriate one. 

d. Create the selected Modeller and the selected Optimiser in the OpnetTM14 software package, 

utilising C++ language. 

e. Create the selection and the switching mechanism in C++ and embedded in the OpnetTM14 software 

package. 

6. Implement the proposed system in a case study simulation scenario in the OpnetTM14 software 

package; and 

7. Analyse, compare, and validate the simulation scenario results. 
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1.4 Challenges 

To create the intelligent optimisation system and satisfy the thesis objectives, there are a number of 

technical challenges to overcome. The main challenges are as follows: 

1. Determine the context-aware parameters that should be considered in the design; 

2. Select the Artificial Intelligence techniques that support the final system design; 

3. Embed the selected Artificial Intelligence techniques in the MANET; 

4. Generate a decision function (the cost function) to be used in finding the optimum routing protocol for 

the assessment process; 

5. Create a switching technique inside each network node that enables the node to switch from one 

routing protocol to another; 

6. Develop a mechanism that assigns the optimal protocol to the network, and the time at which all the 

network nodes should implement the switching; and 

7. Decide the optimum MANET topology that is compatible with the intelligent system. 

 

1.5 Main Contributions 

There are six main contributions of this thesis which are summarised in the following sections. 

 

1.5.1 Comprehensive Taxonomy of Mobile Ad hoc Routing Protocols 

Prioritising routing and considering it a key issue for a better MANET performance has resulted in the 

development of a large number of MANET routing protocols in recent years. Each routing protocol is 

designed for specific characteristics of MANET. The taxonomy listed in this thesis will make the 

researchers aware of the routing protocol classification available in the area of MANET. This taxonomy 

draws an ostensible “big picture” of those available routing protocol classifications that depend on the 

routing characteristics. Such knowledge of the available routing classifications assists in guiding 

researchers to the right choice of routing protocol. Furthermore, this thesis contributes a new classification 

to the traditional taxonomy, which depends upon the routing metric. 
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1.5.2 Creating and Comparing MANET Models 

In this thesis, the modelling concept implemented differs from most of the existing MANET modelling 

research. Whereas most of the existing research involved mathematical equations to represent MANET 

models, in this research, the models were developed by the measurement of network performance. Three 

techniques were utilised to create MANET performance models: neural network, neuro-fuzzy, and 

empirical equations. The three models were therefore generated for the same measurement. Each 

performance model represents the network behaviour against the selected context-aware parameters. This 

thesis presents, for the first time, a quantitative comparison between the techniques mentioned based on 

the Root Mean Square Error (RMSE). This comparison evaluates the modelling techniques and 

determines the best modelling technique for MANET performance. 

 

1.5.3 Optimisation Techniques in MANET 

Two optimisation techniques are explored in detail in this thesis, the Genetic Algorithm (GA) and Particle 

Swarm Optimisation (PSO) techniques. The two techniques were utilised in previous MANET 

optimisation studies. In this thesis, for the first time, a quantitative comparison between GA and PSO in 

optimizing MANET routing protocol is presented based on the minimum Mean Square for the 

performance parameters. This comparison evaluates the optimisation techniques to determine the best 

technique for MANET optimisation. 

 

1.5.4 Detailed Design and Implementation of the Optimisation System 

This thesis presents a novel, self-organised approach for selecting the optimum routing protocol based on 

the network history. The system orders the network to switch protocols to maintain the network 

performance in an acceptable level. A novel design for the routing protocols intelligent optimisation 

system is presented in this thesis. Also, the system requirements are explained in further detail. 

 

1.5.5 Quantitative Evaluation of the Network Performance 

After modifying the original nodes to satisfy the system requirements, the invented intelligent system was 

simulated with a mobile Ad hoc network. To measure the efficiency of the proposed approach, a 
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comparison between networks operated with other routing protocols was made. The networks were 

simulated using the same case study scenario. 

In this thesis, a novel technique has been proposed to calculate the overall performance of the MANET 

and to evaluate the network performance, quantitatively. This technique is based on normalizing the 

network performance parameters, then feeding the results through the cost minimisation function to 

determine the best cost for the network. 

 

1.5.6 Test the Topology Packets Inter-Arrival Time 

One of the major issues in implementing the system proposed by this thesis is the technique to update the 

network nodes. Two types of information packets have been utilised to satisfy this system requirement: 

the periodical Topology packets and the Decision packets. Furthermore, to develop the invented system, 

the Inter-Arrival time for the Topology packets has been tested and the best period selected. 

 

1.6 Thesis Scope 

Having drawn upon paradigms from various sources, the resulting research is of a multidisciplinary nature 

which involves the cross-fertilisation of ideas for optimisation, Artificial Intelligence (AI), and wireless 

networking, among others. Therefore, it was necessary to outline a clear scope to successfully accomplish 

the objectives in the given time frame. This scope is summarised in Figure 1.1. The examples given in 

each domain of research, although not as exhaustive as seen in the figure, are as follows: 

1. In terms of optimisation that considers any characteristic or technique that improves the network 

performance, in this thesis, three different types of optimisation, self-organisation, modelling, and 

prediction, have been considered. 

2. In terms of the underlying wireless networks, the goal of this research is to solve the routing problems 

in mobile Ad hoc networks. Investigating other wireless network problems, and the application of the 

novel optimised system to these infrastructures, is considered beyond the scope of this thesis. 

3. In terms of Artificial Intelligence (AI), there are several powerful techniques in the AI field. In this 

thesis, four well known techniques have been investigated; artificial neural network (ANN), neuro-fuzzy 

(NF), Genetics Algorithms (GA), and Particle Swarm Optimisation (PSO). Investigating other techniques 

is considered beyond the scope of this thesis. 
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Figure 1.1: Thesis scope. 

 

1.7 Thesis Outline 

The work presented in this thesis is organised into nine chapters. Each chapter starts with a brief 

introduction that highlights the main contributions and provides an overview of that chapter. At the end of 

each chapter, a brief conclusion and list of references is presented. The next eight chapters contain more 

detailed information about the theoretical background and technical development of the Intelligent-Mobile 

Ad hoc Network (I-MAN) optimisation system. 

In Chapter 2, brief definitions of mobile networks are presented, which include definitions for Internet and 

Ad hoc networks, with detailed background information about MANET. The routing protocols for wired 

networks are also defined and clarified in this chapter. Various MANET routing protocol taxonomies are 

then listed based on network characteristics. Each protocol characteristic is subsequently defined, 

explained, and summarised at the end of the chapter. 
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Next, in Chapter 3, a survey of the optimised routing protocols is presented. The protocols in this chapter 

are classified according to three optimisation criteria: either a routing metric that is considered in the 

design, a prediction technique utilised, or an Artificial Intelligence technique utilised. Any related work is 

then compared to the thesis in terms of objectives, models, prediction, and design. The chapter is 

concluded with a brief summary and a discussion. 

In Chapter 4, the I-MAN routing protocols optimisation system design is illustrated and the system 

elements are defined, with the task sequence for each element explained thereafter. The techniques for the 

routing protocols considered in the I-MAN optimisation system implementation stage are explained in 

further detail. Each protocol’s weaknesses and strengths are also explained in the chapter. The chapter is 

concluded with a comparison between the routing protocols and a summary. 

Following this, the network configuration setting is determined and the MANET network simulated with 

the selected routing protocols in Chapter 5. The results are first presented in a 2D graph, and then 

organised into more elaborate 3D graphs. The simulation results are discussed in detail, with the network 

performance indicators for each routing protocol evaluated for the entirety of the simulation’s duration. A 

short summary of each routing protocol’s performance concludes the chapter. 

In Chapter 6, the general empirical model is defined and the Regression Equation (RE) models are 

explained in detail. The chapter also defines AI modelling methods and explains ANN and NF at greater 

length. The MANET models presented in this chapter are created using the three previous modelling 

techniques (RE, ANN, and NF). A quantitative comparison to select the best modelling technique based 

on RMSE is presented in this chapter as well, and the chapter closes with a short summary of these results. 

In Chapter 7, two intelligent computing optimisation techniques are defined: Evolutionary Computation 

and Swarm Intelligence. One technique was selected from each method to be tested; GA from the first, 

and PSO from the second. A detailed description of the GA and its operations is presented herein. The 

general characteristics of the PSO and its operation are also subsequently presented. Next, a brief 

comparison between the two techniques is undertaken. The MANET GA Optimiser and MANET PSO 

Optimiser are then configured and implemented module results for each Optimiser recorded. The 

validation table in the chapter confirms that MANET routing protocols lose part of their efficiency when 

the network context is changed. However, by observing the cost function for each technique, the best 

optimisation technique can be identified, and the chapter closes with a short summary of these results. 

Chapter 8, furthermore, addresses two important issues that should be considered in implementing the I-

MAN routing protocols optimisation system in MANET. The final components for the optimisation 

system and the time sequence of the components’ operation are described. The role for each component is 
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described in detail. The embedding procedure for each component in MANET is also illustrated; then a 

case study with a defined simulation environment and the experiment configuration is presented. The 

results are analysed, compared, discussed, and then evaluated. The effect of Inter-Arrival Time (TIA) on 

network performance is further analysed and evaluated. I-MAN routing protocols optimisation system 

limitations are listed in this chapter, which concludes with a discussion of the findings. 

Finally, in Chapter 9, the overall findings of the thesis are summarised. This chapter highlights areas 

currently unexplored and indicates potential directions for further research. 
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Chapter 2 

MANET Routing Protocols 

 

2.1 Introduction 

In recent years, network structure has changed significantly; that the only known and available network 40 

years ago was the wired network. However, as mobility needs continue to grow, wireless networks have 

appeared as an efficient solution to increasing service demands. The development in wired networks has 

paled in comparison to the tremendous increase in wireless networks. This has happened in spite of the 

limitations of wireless network techniques, such as the changes in network topology, a high error rate, 

power restrictions, bandwidth constraints, and issues with link capacity [1]-[2]. 

These limitations are the result of the freedom of movement in mobile wireless networks, as mobile 

wireless networks are dynamic and feature multi-hop topology. As such, researchers have stepped forward 

to solve these challenges, putting substantial effort behind inventing new technologies. They have hence 

addressed the problems with innovative solutions to support the robust and efficient operation of mobile 

wireless networks. One of the main areas of research has been routing technology which will route packets 

from source to destination. 

The focus of this chapter is both describing the mobile network and its types, and defining network 

routing. The main contribution herein is the presentation of different classifications of Ad hoc routing 

protocols according to different criteria. The various classifications give a better overview of the MANET 

routing protocols. The classifications also show the researchers’ settings before designing a routing 

protocol and, at the same time, give an overview for existing routing protocols, as these classifications are 

more beneficial than a lengthy listing of previous routing protocols alongside the updated ones. 

In Section 2.2, two mobile network topologies, the mobile Internet network and the mobile Ad hoc 

network, are introduced. The following section, Section 2.3, then explains the routing protocols in wired 

networks and their types. Wireless network routing problems are also identified here. In Section 2.4, 

different routing protocols taxonomies are presented, and finally, Section 2.5 consists of the summary and 

conclusions from this chapter. 
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2.2 The Mobile Network Topology 

In any network, each application involves sending/receiving information from one node (a personal 

computer, laptop, PDA, or mobile phone) to another. This application could be in the form of FTP files, 

emails, or video. The information is segmented and sent as data packets from node A (the source) to node 

B (the destination), with the data packets specifically routed to reach B. In order to transmit and receive 

data packets, there are two types of network topology, as explained below. 

 

2.2.1 Mobile Internet Network 

The nodes of this type are supported by the Internet, as shown in Figure 2.1. The mobile Internet nodes are 

classified either as a mobile router or as a mobile node. Within the Internet community, mobile nodes are 

either wired by a dial-up line or broadband directly to a router in a fixed network, or mobile node that is 

roaming and connecting wirelessly through various means (fixed or mobile router) to the Internet. The 

backbone-fixed network consists of routers which are the access points (the base station) that connect to 

the Internet nodes. As such, part of the mobile Internet network is fixed and has infrastructure. This 

mobile node could be connected to a mobile router and become part of the mobile network; in turn, the 

routers are connected wirelessly to a fixed network, as shown in Figure 2.1 [3]. 

 

Figure 2.1: Mobile Internet classifications. 
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The Mobile Internet Protocol (IP) technology has been presented to support routing for mobile nomadic 

nodes. However, core network functions, such as hop-by-hop routing, still rely upon pre-existing routing 

protocols operating within the fixed network [4]. The mobility of mobile Internet network is limited; thus, 

the network must stay within transmission range to maintain the Internet connection [5]. Under these 

circumstances, the mobile Internet node in this network would be either a router or a host. 

 

2.2.2 Mobile Ad hoc Network (MANET) 

The vision of Ad hoc network is a wireless network in which users can move anywhere, anytime and still 

remain connected with the rest of their group. Theoretically, if one node has access to the Internet, this 

means that all group nodes have the potential to remain connected with the world at large. 

The successful implementation of Ad hoc wireless networking technology presents a unique set of 

challenges that differ from those of traditional wireless systems and wired networks [6]. One of the 

challenges is the routing protocol in the Ad hoc network. 

MANET is one of the Ad hoc networks that cover a variety of network paradigms for specific purposes, 

such as sensor networks, vehicular networks, underwater networks, underground networks, personal area 

networks, and home networks. 

MANET promises a broad range of applications in civilian and commercial arenas, including board 

meetings and conference calls. MANET also has important applications in national crisis situations such 

as flood and earthquake, in which MANET can be utilised for disaster relief and rescue operations as in 

the case of fires. Finally, MANET may be beneficial in military areas such as in battlefield 

communications. 

The lack of a MANET capacity (in terms of reliable data rate) has stunted the commercialization of many 

MANET types [7]. 

 

2.2.2.1 MANET Functionality 

MANET is an autonomously self-organised network that does not have infrastructure support. Simply, 

MANET needs two or more mobile “nodes” to be created; these nodes can be a laptop, PDA, or/and 

mobile phone, as shown in Figure 2.2. Nodes may be located on airplanes, ships, trucks, cars, or people. 

MANET nodes move in an Ad hoc way and are free to roam about arbitrarily, having no restriction on 

their movements. The network may therefore experience rapid and unpredictable topology changes. 
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Additionally, because nodes in a mobile Ad hoc network normally have limited transmission ranges, some 

nodes cannot communicate directly with each other, and as such, the Ad hoc nodes should route the 

packets with the support of a particular routing technique. MANET nodes are both routers and hosts 

simultaneously. Each node should be logically capable of performing the routing functionality (both route 

packets and act as a router), as well as transmitting and receiving functionality (receiving packets as a 

destination node) and transmitting (transmitting packets as a source node) [7]. 

 

 

Figure 2.2: Mobile Ad hoc NETwork. 

 

2.2.2.2 Ad hoc Network History 

The first Ad hoc generation goes back to 1972 when the Defense Advance Research Projects Agency 

(DARPA) [8] adopted a project called Packet Radio NETworks (PRNET) [9]. The project was primarily 

inspired by the efficiency of packet switching technology such as bandwidth sharing and store and 

forward routing. Also, the project was based on the possibility of applying the packet switching 

technology in a mobile wireless environment. The PRNET network nodes and devices (repeaters or 

routers) were all mobile, although mobility was limited. These protocols were considered among the most 

significant advancements in the field up to this point. 
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The packet switching technology is a digital network communications method that groups all transmitted 

data, irrespective of content, type, or structure, into suitably-sized blocks called packets. The network over 

which the packets are transmitted is a shared network which routes each packet independently from all 

others and allocates the transmission resources as needed. The principal goals of packet switching are to 

optimise the utilization of available link capacity, minimize response times, and increase the robustness of 

communication [10]. 

The second generation of Ad hoc networks emerged in the 1980s, when Ad hoc network systems were 

further enhanced and implemented as a part of the Survivable Adaptive Radio Networks (SURAN) 

program [11]. This program provided a packet-switched network in an environment without infrastructure, 

such as a mobile battlefield similar to that shown in Figure 2.3. The program was ultimately successful, 

improving the performance of radios by making them smaller, cheaper, and more resilient to electronic 

attacks. 

 

 

Figure 2.3: MANET in battle field environment [12]. 

 

Later, this advance in microelectronic technology assisted in the integration of nodes and network devices 

into a single unit called the Ad hoc node. Subsequently, the IEEE 802.11 subcommittee adopted the term 

"Ad hoc networks" to refer to the wireless interconnection of such Ad hoc nodes. 

In the 1990s, the concept of commercial Ad hoc networks became viable with the advent of notebook 

computers and other communications equipment. Global Mobile Information Systems (GloMo) [13] and 

the Near-term Digital Radio (NTDR) [14] are just some of the results of the previously built Ad hoc 

networks. Whereas GloMo was designed to provide an office environment with Ethernet-type multimedia 

connectivity, anywhere and anytime, in handheld devices, NTDR is a two-tier, self-organised Ad hoc 
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network that uses clustering and Link State routing. As such, NTDR was the only "real" non-prototypical 

Ad hoc network that was in use at the time. 

Active research work on Ad hoc networks started in 1995, in a conference session of Internet Engineering 

Task Force (IETF) [15]. Early discussions centred on military tactical networks, satellite networks, and 

wearable computer networks, with specific concerns being raised relative to the adaptation of existing 

routing protocols supporting IP networks in a highly dynamic environment. By 1996, this work had 

evolved into the Mobile Ad hoc Network (MANET) and finally to the charter of the MANET working 

group of the IFTF in 1997. The task of the MANET working group is to specify standard interfaces and 

protocols for the support of IP-based internet over Ad hoc networks. The development of routing within 

the working group and the larger community resulted in the invention of reactive and proactive routing 

protocols. 

Following these developments, Ad hoc networking technology was applied to service applications ranging 

from home wireless to wide area peer-to-remote networking and communications. An example of that 

effort is the Personal Computer Memory Card International Association (PCMCIA card) [16]. This card is 

an international standard body that defines and promotes the PC Card and the Express Card standards. 

Although the organization's name refers to memory cards, its standards are not limited to memory devices; 

these cards can be used for wireless connectivity, modems, and other functions in laptop/notebook PCs 

that may be lacking them natively. The second example is the Bluetooth technology [17], which is a 

wireless protocol for exchanging data over short distances (using short length radio waves) from fixed and 

mobile devices. The network created is called a Personal Area Network (PAN). 

As wireless devices are getting smaller, cheaper, and more sophisticated, they are also becoming more 

ubiquitous. Given the increasing demands of users, communication companies continue to search for 

inexpensive ways to maintain the devices connected. Ad hoc networks, as such, have appeared as an 

appealing solution to this connectivity problem. 

 

2.3 Routing Protocols 

The routing aspect in a network has a fundamental value as it is the means of communication and 

information transfer. Routing is thus one of the main networking functions of a wireless network. In a 

wired or wireless network, the routing principle is such that a source node wants to communicate with a 

destination node that is not in the source covering range. In the case that the destination node is far from 

the source, to establish the connection, the source will try to find a route to the destination node through 
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other nodes, this packets routing process called routing protocol. The data packets will be send out when 

the routing protocol establishes a path between the source and the destination. Several routing algorithms 

and protocols have been developed to solve this routing problem. 

The following sections show the types of wired and wireless network routing protocols. 

 

2.3.1 Routing in Wired Network 

Historically, the wired network was invented before the wireless network, and thus the wired network 

routing protocols were introduced first. Generally, the most popular routing algorithms in the wired 

network are Distance Vector and Link State routing algorithms, as shown in Figure 2.4. These protocols 

find the shortest paths to destinations. 

 

Figure 2.4: Routing protocol classifications for wired network. 

 

2.3.1.1 Distance Vector Routing 

The Distance Vector routing [2] algorithm is based on the Bellman-Ford algorithm [18] to calculate paths. 

The distance can be calculated based on metrics such as hop number. If multiple paths exist, the shortest 

one will be selected. Every router maintains a vector (routing table) that should be exchanged with other 

nodes. The vector stores all of the nodes’ distance, cost (the hop distance), and path (the next hop) 

information to all destinations. The router then exchanges distance information with its neighbours to 

periodically update its routing table.  
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Distance Vector routing protocols are generally known to suffer from slow route convergence and a 

tendency to create loops in mobile environments. Slow convergence leads to the loop problem (explained 

in Section 4.3.4) as some routers continuously increase the hop count for particular networks. The well-

known Routing Information Protocol (RIP) [19] is based on the Distance Vector algorithm. 

2.3.1.2 Link State Routing 

The Link State routing [2] algorithm overcomes the Distance Vector routing problem by maintaining 

global network topology information at each router. In Link State routing, different metrics can be chosen, 

such as number of hops. Shortest (or lowest cost) paths are calculated using the Dijkstra’s algorithm [20]. 

Every node updates the current status of links to all routers in the network through periodic flooding. 

Therefore, if a change in link state occurs, the respective notifications will be flooded throughout the 

whole network. After receiving the notifications, all the routers re-compute their routes according to the 

fresh topology information. In this way, a router receives at least a partial picture of the whole network. 

Unfortunately, the Link State advertisement scheme generates a larger routing control overhead than that 

of Distance Vector routing, as mobility entails frequent flooding. Also, in a large network, the 

transmission of routing information will ultimately consume most of the bandwidth and consequently 

block applications. Thus, reducing routing control overhead becomes a key issue in achieving routing 

scalability. The Open Shortest Path First (OSPF) [21] is an example of the Link State routing algorithm.  

 

2.3.2 Routing in Wireless Ad hoc Network 

Additional routing problems in Ad hoc networks are related to the no pre-existing infrastructure, the 

unpredictable network properties (such as the lack of static link quality), and the changeable network 

topology. Therefore, In Mobile Ad hoc NETworks (MANETs,) where every node has the responsibility to 

act as a route, routing is a particularly challenging issue as paths potentially contain multiple hops. 

Merely implementing Distance Vector and Link State routing algorithms that perform well in wired 

networks is not efficient enough for MANET due to its dynamic features. Using the Distance Vector or 

the Link State routing algorithms in MANET means that the frequent topology changes will greatly 

increase the control overhead or suffer the slow route convergence and decay the algorithms’ 

performance. If this issue is left unaddressed, the scarce MANET bandwidth is likely to be overused. 

Additionally, Distance Vector and Link State routing algorithms, when used for dynamic networks, will 

cause routing information inconsistencies and route loops. 
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Therefore, the routing protocols for wired networks must be modified to match the needs of Ad hoc 

networks in order to solve the previously mentioned problems. As a result, many Ad hoc routing protocols 

were invented. Surveys of routing protocols for Ad hoc wireless networks and MANET are presented in 

[5],[22],[23], and [24] and a more detailed description of mobile Ad hoc routing protocols found in the 

IETF (Internet Engineering Task Force) MANET working group [15]. 

 

2.4 MANET Routing Protocols Taxonomy 

In the literature, there are many mobile Ad hoc routing protocols that should be categorized and classified. 

This classification helps in understanding, analyzing, comparing, and evaluating the routing protocols. 

Also, the classification can assist researchers and designers to differentiate the characteristics of the 

routing protocols and to find the relationships between them. The routing protocols cannot be included 

under one category or one classification, therefore, the known characteristics should be listed and the 

MANET routing protocols classified according to these attributes. 

In this thesis, varies routing protocol classifications are presented that depend either on design philosophy, 

on network structure, or on the routing protocol characteristic (such as packet casting and network routing 

metrics). 

 

2.4.1 Design Philosophy 

Design philosophy is the most popular method to distinguish MANET routing protocols. It is based on 

how routing information is acquired and maintained by mobile nodes. Depending on design philosophy, 

Ad hoc routing protocols are represented by three main categories; proactive (also called Table Driven 

routing or Source routing), reactive (the other names are On Demand and Distributed routing), and hybrid 

(or Hierarchical routing), as shown in Figure 2.5. References [22] and [23] present surveys of the current 

routing protocols based on routing philosophy structure. 
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Figure 2.5: MANET routing protocol classifications depending on design philosophy. 

2.4.1.1 Proactive Routing Algorithm 

The proactive routing algorithm is the new version of the Internet Link State algorithm. The proactive 

routing algorithm [23] maintains routing tables that contain the information and the update for each node 

in the network. In order to maintain a consistent network view, for each topological change in the 

network, nodes should propagate updates throughout the network. Proactive routing protocols share a 

common feature—that is, background routing information can be exchanged regardless of communication 

requests. The Optimised Link State Routing (OLSR) Protocol [25] is an example of the proactive routing 

protocol that will be explained in further detail in Chapter 4. 

The proactive algorithm has many desirable properties, especially for applications that include real-time 

communications and QoS guarantees, such as low latency route access and alternate path support and 

monitoring. The drawback of this technique, however, is the inefficiency of bandwidth utilization and 

power usage due to the overhead produced. 

As such, most proactive protocols will not perform well given a high mobility rate or a large number of 

network nodes. Protocols in this category differ in terms of the number of tables they contain and how 

they update their information. Figure 2.6 illustrates the concept of proactive protocols. For example, if 

node A wants to send data to node D, then node A should search in a previously prepared topology table 

(stored on node A itself) to find D. 
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Figure 2.6: Proactive routing algorithm Route discovery. 

 

2.4.1.2 Reactive Routing Algorithm 

The reactive routing algorithm is the new version of the Distance Vector algorithm. The reactive routing 

algorithm [22] is characterized by Route discovery mechanisms and Maintenance mechanisms. Route 

discovery consists of route request and route reply, which differ from one protocol to another. The Route 

discovery mechanism is initiated when a source needs to communicate with a destination that it does not 

know how to reach. 

As shown in Figure 2.7, when there is a request from node A to transmit data to node D, a route discovery 

process is begun by broadcasting to all nodes searching for node D. When D receives this message, it 

replies to the request to build the route to source A. 
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Figure 2.7: Reactive routing algorithm Route discovery. 
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Route discovery is usually in the form of a query flood. The Route discovery process is completed once a 

route is found or all possible route substitutions have been examined. Once a route has been established, 

as shown in Figure 2.8 by the green and yellow arrows representing the two routes discovered by source A 

to destination B, the Maintenance mechanisms will support routing in the network by keeping the data 

packets following the discovered route until either the destination becomes inaccessible along every path 

from the source, or the route is no longer desired. The destination may be rendered inaccessible for many 

reasons; for example, an intermediate node (which is part of the route to the destination) moves far from 

the network and is unable to participate, or one of the route nodes breaks down due to the node’s battery 

life (as shown in Figure 2.8 by the purple arrows), or the node is busy with another application and does 

not want to consume power for communication. Also, link breakages can occur when the source node is 

moved in an attempt to maintain the connection with its destination. 

 

Figure 2.8: MANET reactive routing protocol. 

 

When the intermediate node cannot deliver the data packet to its neighbour (next hop) due to a link 

breakage, the node’s Maintenance mechanism will trigger a route error message to notify the source node 

and other nodes that certain nodes are no longer reachable. When the source receives this error message, it 

will try to solve the problem by either using other ready routes or establishing a new Route discovery. 
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The differences between the reactive routing protocols are in the implementation of the path discovery 

mechanism and its optimisation. Generally, reactive routing requires less overhead than proactive routing, 

but incurs a path discovery delay whenever a new path needed. The Dynamic Source Routing (DSR) 

protocol [26] and Ad hoc On Demand Distance Vector (AODV) Routing Protocol [27] are examples of 

reactive routing protocols. AODV and DSR techniques will be explained in further detail in Chapter 4. 

 

2.4.1.3 Hybrid Routing Algorithm 

Hybrid routing algorithms combine the two previous techniques (the proactive and the reactive) in an 

attempt to bring together the advantages of the two approaches. As such, hierarchical architecture is 

utilised in that these algorithms require an addressing system wherein the proactive and the reactive 

routing approaches are implemented at different hierarchical levels. 

Such algorithms are designed to increase scalability by allowing the nodes closest to each other to connect 

and form a number of groups, as shown in Figure 2.9, and then assigning the group nodes different 

functionalities, both inside and outside the group, to reduce the Route discovery overhead. This is mostly 

achieved by proactively maintaining routes to nearby nodes and determining routes to far away nodes 

using a route discovery strategy. Both the size of the routing tables and update packets are reduced by 

including part of the network (instead of the whole network) within them, thus reducing control overhead 

in turn. The Zone Routing Protocol (ZRP) is an example of a hybrid routing protocol [28]. 

 

 

Figure 2.9: Hybrid-based routing algorithm. 
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2.4.2 Network Structure  

In this section, a classification of the routing algorithms according to the network structure is provided. 

The routing algorithms that depend on the network structure consider two important elements which effect 

the routing operation: the nodes’ mobility and the network scalability. The structure of Figure 2.10 blow is 

altered, as in Figure 2.5, but this is necessary in order to preserve the integrity of the diagram. Figure 2.10 

categorizes the routing algorithms in Ad hoc networks into three broad categories: flat routing, geographic 

position information assisted routing, and hierarchical routing. 

 

 

Figure 2.10: MANET routing algorithms classifications depending on network structure. 

 

2.4.2.1 Flat Routing 

Flat routing approaches [24] adopt a flat addressing scheme in that each participating node plays an equal 

role in routing. Therefore, the routing protocol is named as a uniform routing protocol in which all its 

mobile nodes have the same role, importance, and functionality. Flat routing schemes extend into two 

classes, proactive and reactive, according to their design philosophy (more detail about these two classes 

is given in Section 2.4.1). In a large network, flat reactive protocols are better than flat proactive routing 

protocols because of the reactive design philosophy; for example, if there is no communication, this means 

that there are no routing activities and no permanent routing information maintained at the network nodes. 
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The Optimised Link State Routing (OLSR) protocol [25], Dynamic Source Routing (DSR) protocol [26] 

and Ad hoc On Demand Distance Vector (AODV) routing protocol [27] are examples of uniform routing 

protocols. 

 

2.4.2.2 Hierarchical Routing 

In contrast to uniform flat routing, non-uniform hierarchical routing usually assigns different roles to 

network nodes (as explained in Section 2.4.1.3). Non-uniform routing approaches are related to 

hierarchical network structures to facilitate node organization and management. Normally, reactive 

algorithms are exploited to select the special nodes which carry out reactive management and/or routing 

functions. 

In general, flat routing schemes become inefficient when the wireless network size increases due to link 

and processing overhead. Therefore, hierarchical routing, as shown in Figure 2.6, has been presented as an 

efficient solution to solve the problem and produce a scalable network. As shown in Figure 2.1, 

hierarchical routing has been implemented in wired networks for a long time. 

Non-uniform hierarchical routing protocols can be further sorted into three subcategories: zone-based, 

cluster-based, and core-based. These protocols are categorized according to the organization of the mobile 

nodes, their respective management, and their routing functions [5]. 

A. Zone-based (Hybrid) 

Figure 2.9 shows a zone-based hybrid routing algorithm; with this technique, each node has a local scope 

and different routing strategies are used, inside and outside the scope, as communications pass across the 

overlapping scopes. Given this flexibility, a more efficient overall routing performance can be achieved. 

Compared to maintaining routing information for all nodes in the whole network, mobile nodes in the 

same zone know how to reach each other with a smaller cost. In some zone-based routing protocols, 

specific nodes act as gateway nodes and carry out inter-zone communication. Therefore, the network will 

contain partitions or a number of zones. The Zone Routing Protocol (ZRP) [28] is a MANET zone-based 

hierarchical routing protocol. 

B. Cluster-based 

A cluster-based routing protocol is the most popular hierarchical routing technique. It uses a specific 

clustering algorithm for cluster head election in which mobile nodes are grouped into clusters by 

geographic proximity. Cluster heads then take responsibility on behalf of the cluster for membership 
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management and routing functions. Cluster head Gateway Switch Routing (CGSR) [29] is an example of a 

cluster-based MANET routing protocol. The Hierarchical State Routing (HSR) protocol [30] also supports 

a multi-level cluster structure. 

C. Core Node-based 

In core node-based routing protocols, critical nodes are dynamically selected to compose a "backbone" for 

the network. The “backbone” nodes carry out special functions, such as the construction of routing paths 

and propagation of control/data packets. Optimised Link State Routing (OLSR) [25] and Core Extraction 

Distributed Ad hoc Routing (CEDAR) [31] protocols are typical core node-based MANET routing 

protocols. 

2.4.2.3 Geographic Position Information Assisted Routing 

Routing with assistance from geographic location information requires each node to be equipped with a 

Global Positioning System (GPS). This satellite system [32] provides reliable positioning, navigation, and 

universal timing services to worldwide users on a continuous basis, in all weather, day and night, 

anywhere on Earth. This requirement is quite realistic today since such GPS devices are advanced, 

updated, inexpensive, and can provide reasonable precision; GPS provides location information with a 

precision within a few meters. Location information can be used for directional routing in distributed Ad 

hoc systems. Research in this area has shown that geographical location information can improve routing 

performance in Ad hoc networks [33]. 

Additional care must be taken in a mobile environment because locations may not be accurate by the time 

the information is used. All protocols based on GPS assume that the nodes know their positions. The 

Location Aided Routing (LAR) [34], the Distance Routing Effect Algorithm for Mobility (DREAM) [35], 

and geographical routing [36] are examples of geographic position-assisted routing protocols. 

 

2.4.3 Casting Packets 

In this section, the routing algorithms are classified depending on the packet casting type, either unicast or 

multicast routing protocols, as shown in Figure 2.11. 
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Figure 2.11: Routing algorithm classifications depending on packet casting. 

There are three categories to cast the control and/or the data packets in network, as shown in Figure 2.12: 

a. Unicast: source will send messages to a single destination. 

b. Multicast: source will send same messages to specific destinations. 

c. Broadcast: source will send same messages to all possible destinations. 

 

Figure 2.12: Packets casting classification. 

 

2.4.3.1 Unicast Routing 

Most MANET routing algorithms previously categorized could be classified as unicast routing algorithms 

such as Optimised Link State Routing (OLSR) protocols [25], Dynamic Source Routing (DSR) protocols 

[26], and Ad hoc On Demand Distance Vector (AODV) routing protocols [27]. 
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2.4.3.2 Multicast Routing 

Many multicast routing schemes have been proposed for wired networks, such as the Multicast Open 

Shortest Path First (MOSPF) [37] which has been widely used in these networks. 

Multicasting in MANET is defined as the transmission of packets to a group of hosts identified by a single 

destination address. Multicast service is crucial in management applications where one-to-many 

dissemination is necessary. Applications that include close team collaboration in rescue patrols, military 

battle, and among scientists with requirements for audio and video communications, are few examples of 

multicast routing services. 

The classification methods for unicast routing algorithms are also appropriate for the existing multicast 

routing algorithms to be classified into reactive, proactive, and hybrid multicast routing. The Ad hoc 

Multicast Routing (AMRoute) [38] belongs to the proactive multicast routing category, whereas On 

Demand Multicast Routing Protocol (ODMRP) [39] is a reactive multicast routing protocol and the Core-

based Tree (CBT) [40] is a hybrid multicast routing protocol. 

Figure 2.11 shows that the existing MANET multicast routing approaches can be subclassified into tree-

based, mesh-based, core-based, and group forwarding-based multicast routing protocols [41]. This 

subclassification is based on how the distribution paths among group members are constructed. Some of 

the multicast routing protocols could be included in more than one category, such as the Core-assisted 

Mesh Protocol (CAMP) [42] which can be characterized as both a core and mesh multicast routing 

protocol. 

a. Tree-based 

In tree-based multicast routing protocols, the source nodes are the roots of multicast trees and in them the 

executing algorithm for distribution tree contraction and maintenance. This requires that a source must 

know the topology information and address all of its receivers in the multicast group. Therefore, when 

used for dynamic networks, source-rooted tree-based multicast routing protocols often suffer from control 

traffic overhead. The AMRoute [37] is an example of one such source-rooted tree-based multicast routing. 

b. Core-based 

In a core-based multicast routing algorithm, cores are nodes with special functions such as multicast data 

distribution and membership management. Some core-based multicast routing algorithms also utilise tree 

structures, but unlike source-rooted tree-based multicast routing, multicast trees are rooted at core nodes. 

For different core-based multicast routing protocols, core nodes may perform various routing and 

management functions. For example, in a CBT multicast routing protocol [40], cores are cross points for 
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all traffic flows of multicast groups and may become bottlenecks along the network. On the other hand, in 

protocols like CAMP [42], core nodes are not necessarily utilised by all routing paths. 

c. Mesh-based 

In a mesh-based multicast routing protocol, packets are distributed along mesh structures that are a set of 

interconnected nodes. The mesh structure is more robust than the tree structure for multicast routing in 

dynamic networks because a mesh provides alternate paths when link failure occurs. However, the cost for 

maintaining mesh structures is normally higher than that of trees. The ODMRP [39] and CAMP [42] are 

examples of mesh-based multicast routing protocols.  

d. Group Forwarding-based 

In the group forwarding-based multicast routing, a set of mobile nodes is dynamically selected as 

forwarding nodes for a multicast group. Forwarding nodes then assume the responsibility for multicast 

packet distribution. Using this scheme, it is possible to obtain multiple routing paths and send duplicate 

messages to receivers through the different paths obtained. ODMRP [39] is a group forwarding-based 

multicast routing protocol that uses adaptive forwarding groups to accomplish this. 

2.4.3.3 Broadcasting Methods 

The broadcasting mechanism is used by MANET nodes for periodic messages (control message). A 

number of research groups have proposed efficient broadcast protocols based on distributed and 

hierarchical methodologies. The broadcasting methods could be subclassified according to their 

transmission methodology, as shown in Figure 2.13. In addition to the simple flooding, the 

subclassification includes probability-based methods, area-based methods, and neighbour knowledge 

methods. Most existing distributed network-wide broadcast techniques have been summarised and 

categorized in Reference [43]. 

 

Figure 2.13: Classifications of broadcast methodology. 
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a. Simple Flooding 

Most of the routing protocols use a generally inefficient form of broadcast called simple flooding. In 

simple flooding, when a node receives a packet to be broadcast for the first time, it transmits the packet to 

all nodes within its transmission range. In dense networks, the simple flood wastes bandwidth and node 

resources. DSR [26] and AODV [27] routing protocols use the simple flooding technique. 

The following methods improve upon simple flooding and do not require that every node receive a packet 

to transmit it further. 

b. Probability-based Methods 

Using the probability-based protocols [44], the node decides whether to rebroadcast according to a 

specified probability or a simple conditional event which relates to the probability of reaching additional 

neighbours. 

c. Area-based Methods 

Area based methods [44] use knowledge of sender node locations to estimate whether a transmission will 

reach a significant amount of additional coverage area. LAR [34] and DREAM [35] include area-based 

methods in their routing protocols. 

d. Neighbour Knowledge Methods  

Neighbour knowledge methods [44] require the use of “Hello”-type packets so that nodes have explicit 

data regarding their neighbourhood topology; the nodes then use this neighbour data to decide whether to 

rebroadcast a packet. The OLSR routing protocol [25] implements this method. 

 

2.4.4 Network Routing Metrics 

In this thesis, a new classification for routing algorithms has been added which depends on the routing 

metric. The routing metric used in the identification of the routing path could also be used as a criterion 

for MANET routing protocols classification, as shown in Figure 2.14. 
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Figure 2.14: Routing protocol classifications depending on route metric. 

 

In the previous sections, all mentioned MANET protocols have based on the hop number as a routing 

metric, such as in OLSR [25], DSR [26], and AODV [27]. If there are multiple routing paths available, the 

path selected will be the shortest routing paths with the minimum hop number in order to decrease traffic 

overhead and reduce packet collisions when compared to longer routing paths. 

However, one disadvantage to the mobility in MANET is that it can cause route failure and frequently 

leads to route discovery. Therefore, the link stability has to be considered in the route construction. 

Routing approaches such as Associativity-based Routing (ABR) [45] selects routes based only on nodes’ 

link stability, where each node has an associative state that implies the period of stability. ABR is a simple 

bandwidth-efficient distributed routing protocol that supports mobile computing in a conference-sized 

MANET environment. Unlike the proactive or reactive routing algorithms, this protocol does not attempt 

to consistently maintain routing information in every node. In this manner, the routes selected are likely to 

be long-lived; hence, there is no need to restart frequently, resulting in a higher attainable throughput. 

Route requests are broadcast on a per need basis. The protocol is free from loops, deadlock, and packet 

duplicates and has scalable memory requirements. 

 

2.5 Summary 

This chapter presented a review of the routing process in MANET, which is much more complex than in 

wired networks because of the host mobility, interference of wireless signals, and the broadcasting nature 

of wireless communication. The complexities of this process and the associated issues have motivated 

researchers to develop several MANET routing protocols, with varying performance under different 

conditions. 
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Each routing protocol developed according to a specific criterion. In this chapter, an overview of four 

different MANET routing protocol categories was presented, including design philosophy, network 

structure, packets casting, and network routing metric. Each of these categories was used to compare, 

classify, and group MANET routing protocols with similar characteristics. These characteristics relate 

mainly to the information utilised for routing that determined the nodes’ roles in the routing process. In 

this chapter, a new type of classification for MANET routing protocols was added based on network 

routing metrics. 

The review in this chapter indicates that the invention of new protocols is not a solution due to the large 

number of protocols already available. However, there should be an understanding of the network 

requirements and conditions for which each protocol is suited and will function best. For each of these 

criteria, there is a wide list of protocols that will meet its needs; therefore, this understanding of 

requirements and conditions is crucial to selection of the right protocol to enhance efficiency and 

performance. 

As mentioned previously, focusing on a particular characteristic leads to the design of a particular routing 

protocol. Therefore, a range of comparisons between the routing protocols for each criterion should be 

made and then evaluated. 
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Chapter 3 

Optimisation in MANET Routing 

Protocol 
 

3.1 Introduction 

The evolution in mobile applications demands extra attention from the researcher working to optimise 

MANET for better service. The optimisation in MANET, however, is more difficult than that of wired 

networks due to MANET characteristics such as lack of centralization, network mobility, and multi-hop 

communications. Routing optimisation is therefore one of the most important fields in today’s MANET 

development. 

The main contribution of this chapter will be to present the optimisation work in MANET routing 

protocols up to now. Various classifications for the optimised routing protocols have been presented 

according to the routing metrics, the prediction techniques, or the use of Artificial Intelligence (AI). The 

chapter then identifies the relationship between the works reviewed and the work within the thesis. 

The chapter is organised as follows: Section 3.2 includes an overview of the invented MANET optimised 

routing protocols based on routing metrics, predictions techniques, and AI techniques; Section 3.3 relates 

the work in this thesis to other research reviewed in terms of objectives, models, the prediction method, 

and design; and finally, the conclusion is given in Section 3.4. 

 

3.2 MANET Routing Protocol Optimisation 

In MANET, optimisation has been used in different wireless layers and in a variety of techniques. The 

attention of researchers over the last decade, however, has been focused specifically on enhancing the 

MANET routing protocols. The principle behind optimizing MANET route is to control the flows in the 

network such that the flows are given better or best-effort treatment. Therefore, the best metrics to 

represent the success of the optimisation process and also measure MANET performance could be 
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increased throughput, reduced packet loss, reduced latency, and reduced load. As such, the literature tends 

to focus on throughput and delay as the two most important performance metrics for optimisation 

solutions. 

 

3.2.1 Optimum Routing Protocols Based on Routing Metrics 

In the literature, most of the optimise protocols, as in [1], are designed based on traditional or widely 

implemented protocols. These optimised protocols have been enhanced from the original routing protocols 

by including some features that perform the optimisation. This process converts the traditional routing 

protocols to an optimise protocol. 

MANET optimisation has been based on routing metrics, such as the traditional hop count metric, and the 

context-aware metrics, as discussed below. 

3.2.1.1 Hop Count Metric 

Selecting the optimum path (that with the least cost) according to the hop count metric is one way of 

optimizing the route. The optimum route relaying on the minimum hop count could be accomplished in 

different ways, such as: by selecting the shortest path (node by node), as in Al-Khwildi and Al-Raweshidy 

[2]; by selecting one of many paths discovered through the route discovery process, as in Dai and Wu [3]; 

or by a unicast query in the route discovery process, as in Seet et al. [4]. 

3.2.1.2 Context-Aware Metrics 

In Ad hoc networks, routing not only has to be fast and efficient, but also adaptive to the changes in the 

network topology; otherwise, the performance may be severely degraded. As mentioned before, route 

optimisation can be accomplished by considering those context-aware metrics which measure MANET 

performance. Context-aware metrics could include mobility awareness, energy awareness, power 

awareness, availability, contention awareness, and congestion awareness. Research to find more context-

aware metrics that affect the routing process is ongoing. Including such metrics in the invented protocols 

should help to improve MANET performance. 

Examples of those context-aware metric(s) that researchers depend upon to create their optimised protocol 

are listed below: 

1. The energy-aware metric was represented by two objectives; node’s life time and the overall 

transmission power were the basis for creating the battery-life aware routing schemes for wireless Ad hoc 
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networks in [5]. In that development, the aim was to minimize the overall transmission power requested 

for each connection and to maximize the lifetime of Ad hoc wireless networks, meaning that the power 

consumption rate of each mobile host must be evenly distributed. 

The routing schemes invented by Kim et al. [6] also relied on an energy aware context metric to select the 

path of least cost and sufficient resources. 

Furthermore, in the Mukherjee et al. paper [7] the energy aware metric was the major element in 

developing an analytical optimised method to minimize routing energy overhead. 

In the multicast routing field, Moh et al. [8] invented a robust two-tree multicast protocol also based on 

the energy aware context. This protocol uses two trees, a primary and an alternative backup tree, to 

improve the energy efficiency and to offer a better energy balance and packet delivery ratio. 

2. The bandwidth-aware metric was utilised to create the Mukhija and Bose [9] Reactive Routing 

Protocol.  

3. The congestion-aware metric was utilised in the Lu et al. paper [10] to establish distance vector 

routing protocol. 

In addition, more than one context-aware metric was combined with the routing metric to achieve a better 

outcome. Reference [11] introduced the availability aware metric that is represented by the quantity 

relationship of link status and mobility aware, as the quantity is required to predict the link status for a 

future time period in consideration of mobility. 

Next, path congestion and energy usage metrics were combined with the hop count metric in the Cao and 

Dahlberg protocol [12] to represent the cost criteria that defines path cost during Route discovery. 

Moreover, the routing schemes developed by Chen and Nahrstedt [13] select the network path with the 

least cost and sufficient resources to satisfy a certain delay and bandwidth requirement in a dynamic 

mobile environment. This protocol combines hop count with energy, latency, and bandwidth-aware 

metrics.  

Additionally, energy-aware and congestion-aware metrics were both included in the mobile routing 

approach of Ivascu et al. [14]. 

Usually, the ZRP is configured for a particular network through an adjustment of a single parameter: the 

routing zone radius. Paper [15] combines mobility-, contention-, and congestion-aware metrics to address 

the issue of configuring the ZRP and providing the best performance for a particular network, at any time. 
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This paper also adds more parameters that affect the performance of the ZRP, including relative node 

velocity, node density, network span, and user data activity. 

Finally, other combinations were also possible, such as power-aware and mobility-aware metrics for 

mobile Personal Area Network in Park et al. [16]. This optimisation technique includes context-aware 

metrics with routing metrics that would be effective when activated or employed in an online or real 

scenario. 

 

3.2.2 Optimum Routing Protocols Based on Prediction 

While the previous optimisation technique based on routing metrics can be considered as one type of 

optimizing, another optimisation type is the predication technique. Optimising routing metrics based on 

prediction is utilised in networking to achieve a better outcome. Prediction yields an initial idea about the 

behaviour of network elements. In the study by Jiang et al. [17], an equation was formulated to predict the 

link status for a time period in the future for a mobility aware quantity, whereas Ghosh et al. [18] 

predicted the user movement based on GPS receivers to control a hub-based orbital pattern in the 

Sociological Orbit aware Location Approximation and Routing (SOLAR) protocol. 

 

3.2.3 Optimum Routing Protocols Based on Modelling /Prediction Techniques 

Modelling is another optimisation technique which is also included in the literature. The modelling 

process in MANET is utilised to support the prediction technique, as it includes the estimation of various 

performance metrics for the multi-hop wireless networks; for example, the empirical model in [19] 

developed to characterize the relationship between the proposed response indexes, according to influential 

factors. The four response indexes were packet delivery ratio, end-to-end delay, routing overhead, and 

jitter. The influential factors were node mobility, offered load, network size, and routing protocol. 

A mathematical framework to model contention was presented by Jindal and Psounis [20]. This 

framework was used to analyse any routing scheme, with any mobility and channel model. This 

framework can also compute the expected delays for different representative mobility-assisted routing 

schemes under random direction, random waypoint, and community-based mobility models. This 

framework could be considered mobility model aware as it investigated three different mobility models 

[21] to conclude the delay. The delay expressions were then used to optimise the design of routing 

schemes. 
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Additionally, in the bi-objective linear programming mathematical area, Guerriero et al. [22] proposed a 

bacterium optimisation model which allows the energy consumption and the link stability of mobile nodes 

to be taken into account, simultaneously. 

Prediction based on modelling is an interesting area in optimisation. This technique was employed by 

Nogueira et al. [23] to create a framework to model MANET. The framework integrates important 

functional characteristics such as traffic flow, mobility, and background traffic, with each characteristic 

represented by its own matrix. The mathematical network model was built from a set of (past) traffic 

measurements and the corresponding network performance metrics. This constructed model can then be 

used to predict future values of the network metrics, depending on the mathematical cost function, and 

based only on the network gateway’s traffic measurements parameters. 

 

3.2.4 Optimum Routing Protocols Based on Application Requirements 

Prediction based on MANET application requirements is a very important issue that could be considered 

as another type of optimisation in MANET. The Cross-layer Route Discovery Framework (CRDF) [24] 

proposes Routing Strategy Automation (RoSAuto) technique that enables wherein each source node 

automatically decides the routing strategy based on the application requirements, and then each 

intermediate node further adapts the routing strategy so that the network resource usage can be optimised. 

In addition, CRDF was designed to provide a flexible architecture for searching desirable routes with low 

control overhead. CRDF relies on the Priority-based Route Discovery Strategy (PRDS) mechanism to 

solve the “next-hop racing” problem and the “rebroadcast redundancy” problem.  

 

3.2.5 Optimum Routing Protocols Based on Programmable Framework 

Prediction based on a programmable platform is another type of optimisation in MANET. Papers [25], 

[26], and [27] present a context-based programmable framework and functionality for dynamic 

service/protocol deployment. This technique allows the nodes of a MANET to download and safely 

activate the required service/protocol software dynamically. According to the available contextual 

information, the nodes will evaluate the preconditions that will trigger the downloading and activation. 

This strategy leads to the arrangement of the nodes’ capabilities so that common services and protocols 

can be deployed even if the downloading and activation are not available at every node. In addition, 

dynamic context-driven deployment may lead to a degree of network self-optimisation. 
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3.2.6 Optimum Routing Protocols Based on Artificial Intelligence 

Evolving Artificial Intelligence (AI) has played a key role in optimisation. There are a variety of 

optimisation techniques to solve MANET routing problems in AI standard repertoire, examples of which 

are given below. 

3.2.6.1 Neural Network Approach 

Guo and Malakooti [28] present a solution for optimizing the route through employing intelligent use of 

the nodes’ past experiences of the network traffic conditions in order to make predictions for future 

network traffic conditions based on these experiences. Furthermore, Guo and Malakooti developed a 

neural network to predict the mean per-packet one-hop delays. The nodes then used the predicted one-hop 

delays to participate in dissemination of routing information. 

3.2.6.2 Neuro-Fuzzy Approach 

Martinez-Alfaro and Hernandez-Vazquez [29] used an Adaptive Neuro-fuzzy Inference System (ANFIS) 

as a predictor. ANFIS is employed inside an Ad hoc hierarchical network to resolve the route error 

optimisation problem. The principal problem to resolve was how many nodes the routing protocol can 

accept? Given that, the larger the network size, the more performance will suffer. In this Ad hoc 

hierarchical network, ANFIS predicts future node mobility to keep the network working at the same level 

irrespective of how many nodes join the network. 

3.2.6.3 Swarm Intelligence Approach 

Many routing protocols draw inspiration from Swarm Intelligence similar to the ant colony adaptive 

routing algorithm of Caro et al. [30]. In their study, the authors presented the algorithm as a robust, 

decentralized, and self-organised method of routing. 

Moreover, Huang et al. [31] investigated a multicast routing protocol which strived to meet the variation 

of network topology behaviour (scalability), and satisfy the requirements of specific multimedia traffic, 

utilising Particle Swam Optimisation (PSO) in volatile MANET environments. 

In the sensors network, Shih [32] evolved PSO to create an energy aware cluster-based routing protocol 

that exploits the geographical location information of nodes to assist in network clustering. Also, in the 

same Ad hoc sensor network area based on Swarm Intelligence, a robust mobility aware and energy aware 
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SIMPLE routing protocol [33] was the solution suggested by Yang et al. for the data acquisition problem 

found in those networks with mobile sinks. 

Furthermore, Rajagopalan and Shen [34] used the Swarm Intelligence mechanisms in Ad hoc networking 

with Swarm Intelligence (ANSI) to produce a congestion aware ANSI routing protocol to select next-hops 

for both pure and hybrid Ad Hoc networks. 

Finally, based on the Swarm Intelligence mechanism, Shen and Rajagopalan [35] created an adaptive 

Protocol-Independent Packet Delivery Improvement Service (PIDIS) mechanism to recover lost multicast 

packets. The advantage of this mechanism is that the operations of PIDIS do not rely on any underlying 

routing protocol and can be incorporated into any Ad hoc multicast routing protocol. 

 

3.3 Related Work 

This section will compare the surveyed works with the work proposed in this thesis, namely the 

Intelligent-MANET (I-MAN) routing protocols optimisation system. The comparison elements are 

models, prediction, objective, and design. 

 

3.3.1 Models 

As seen previously, a mathematical equation was utilised in MANET to create models such as those of 

Jindal and Psounis [20], Guerriero et al. [22], and Nogueira et al. [23]. Also relevant is an attempt by 

Martinez-Alfaro and Hernandez-Vazquez [29] to utilise AI modelling techniques to solve MANET 

routing problems. Although there is a similarity between the work in [23] and the thesis in that both 

investigations create MANET models, the work in [23] creates mathematical models, whereas the models 

for the I-MAN system are created by deploying AI (that’s mean, by implementing neuro-fuzzy (NF) 

technique). 

The work in [20] and [22] have created models for parameters in the network, whereas the I-MAN 3D 

models in this thesis represent the network performance against context parameters. To our knowledge, 

there has been no previous MANET modelling done in this format before. 
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3.3.2 Prediction 

Both work, in [23] and this thesis utilised prediction components for optimisation. The work in [23] relies 

on mathematical equations whereas the I-MAN routing protocols optimisation system utilises AI by 

implementing Particle Swarm Optimisation.  

 

3.3.3 Design 

The main difference between most of the mentioned works and the work in this thesis is that previous 

researchers are proposing new protocols to be added to the numerous existing routing protocols, as each 

protocol is only useful in a certain network context. However, the I-MAN optimisation system proposes 

no new protocol; it is a selection approach that deploys the available routing protocols to their best 

advantage. 

Second, the work in [20] and [35] on the invented model or mechanism could be applied with any network 

routing protocol. Both researches are relevant to the re-tuned system in that they are flexible and can be 

adapted to changes. 

The Programmable Ad Hoc network (PAN) project [27] shares with the I-MAN optimisation system the 

basic design idea to select routing protocol depending on contextual information. Nonetheless, the two 

approaches differ in several fundamental ways: 

1. The PAN project considers network programmability whereas the I-MAN system considers 

optimisation techniques to solve MANET routing problems. 

2. The PAN project creates context models utilising lightweight Unified Modeling Language (UML) 

whereas the I-MAN system creates AI models utilising neuro-fuzzy. 

3. The PAN project models represent the network context alone whereas the I-MAN system 3D models 

represent the network performance according to the network context (the network history). 

4. The hierarchal network of the PAN project consists of three layers, manger head, cluster head, and 

cluster node, whereas the I-MAN system network consists two layers, Intelligent node (cluster head) and 

network node (cluster node). 

5. Although the PAN project and I-MAN system are both mobility aware and scalability aware, these 

parameters were implemented in different ways. For the PAN project, the scalability problem is solved by 

changing the network topology to a hierarchal approach that consists of three layers so that as the number 
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of nodes increases, more clusters are added; the I-MAN system, on the other hand, included the scalability 

(network size) as the second context parameter. 

6. Finally, the work presented in the PAN project was time discrete; there was no graph presenting one 

continuous experimental (or simulation) scenario to show the switching of the invented scheme through 

time or which routing protocol (AODV or OLSR) was adopted for each period. Also, the cluster nodes 

switching adaptation strategy was not clear. 

 

3.3.4 Objective 

Most of the previous protocols surveyed have focused on individually improving the number of network 

performance parameters and having multiple objectives, except for the work undertaken in paper [19] and 

the system in this thesis. The I-MAN approach is significant in that it can better represent a single 

objective by combining the network performance parameters in one equation. 

 

3.4 Summary 

Creating the optimised routing protocol in MANET was first represented by the protocol that selects the 

shortest path. Later, context-aware metrics were considered to develop and optimise the routing protocols. 

Prediction, modelling, and AI techniques were also included to support the optimisation. 

Researchers have invented optimum routing protocols with the main goal of their design formulated for 

particular objectives in the invented protocol. As such, there are already many routing protocols that 

equate the most suitable path with the shortest, most reliable, or most self-organised path. Also, there are 

the self-management protocols that are composed of self-protecting, self-healing, self-configuring, and 

self-optimizing components. Although they have different objectives, each of these protocols reflects their 

objective. 

For this reason, the search for the most effective routing protocol that provides the optimum path and 

satisfies the entirety of objectives still continues, as to our knowledge no routing protocol can handle and 

solve all these objectives at once, although there are many protocols which can solve one, two, or maybe 

even three of these objectives. Thus, from the survey undertaken in this chapter, it can be concluded that 

there is a need for an approach that could deploy the existing algorithms based on the network’s needs. 
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Chapter 4 

I-MAN Design 

 

4.1 Introduction 

Wireless networks are designed to provide service to their users at an acceptable level; performance 

modelling and evaluation should therefore play a crucial part in the designing and monitoring of those 

processes which ensure the successful deployment of a network. As such, network traffic and 

characteristics should be analysed and properly controlled to achieve the desired service. Reaching this 

design stage in MANET demands specific modelling and design tools. 

Therefore, in this thesis the aim has been to design an intelligent system employing Soft Computing [1] to 

fulfil the above requirement. The goal of Soft Computing is to construct a new generation of Artificial 

Intelligence, known as Computational Intelligence, to develop intelligent machines and to solve non-linear 

and mathematically un-modelled system problems. Soft Computing, as such is ultimately a method of 

modelling. With this method, an intelligent system could be created by combining intelligent techniques 

such as fuzzy logic, neuro-computing, and evolutionary, genetic, and probabilistic computing into one 

multidisciplinary system. As a result, the intelligent system should have the ability to learn from those 

experiences that will lead to an achievement of the system objectives. In other words, it senses its 

environment and learns the correct action for each situation [2]. 

In this chapter, the Soft Computing goal has been achieved through considering Artificial Intelligence 

(AI) techniques and merging them into one system, as the AI system could be a program that has inputs 

and learns which outputs get the most approval, either by human beings or a program that can contain the 

inputs from the system previous knowledge. 

This chapter also outlines the components needed to design an intelligent optimised system, and presents 

three routing protocols for study and comparison. The main contribution is the novel design of the 

Intelligent-Mobile Ad hoc Network (I-MAN) routing protocols optimisation system. 

The remainder of the chapter is organised as follows: in Section 4.2, the I-MAN routing protocols 

optimisation system design elements are presented and explained in detail; in Section 4.3, the three 



_____________________________________________________________________51 

 

selected routing protocols implemented with the proposed design (the intelligent optimisation system) are 

described; with particular focus on the routing protocols’ weaknesses, strengths, and a comparison 

between the three protocols; and finally, Section 4.4 includes a chapter summary and findings. 

 

4.2 I-MAN Design Elements 

The proposed intelligent system requires contributions from multiple fields, as each field output will 

contribute to the proceeding field to create the final intelligent system. The first field is the communication 

field, the second is the modelling field, and the third is the optimisation field. The first field is represented 

by a wireless MANET whereas the second and the third fields are AI. 

The proposed intelligent system objective is to select the optimum routing protocol for MANET, in that 

particular context. Therefore, designing the I-MAN routing protocols optimisation system demands 

specific simulation, modelling, and optimisation tools. Moreover, different techniques for modelling and 

monitoring should be tested in order to create the finest system. Hence, four main components should be 

employed, these being the Simulator, Modeller, Optimiser and protocol Switcher (in which the MANET 

network will cooperate with the intelligent system to achieve its objective), in conjunction with one 

another to accomplish the proposed system’s design, 

Given below is a brief list of definitions for all elements needed to create the I-MAN routing protocols 

optimisation system. 

A. Simulation: simulates MANET in different scenarios containing different contexts, collects the 

performance metrics, and then determines the representative value for each performance metric. 

B. Modelling: utilises modelling techniques to generate MANET performance models for each 

routing protocol depending on entire scenarios. 

C. Optimisation: utilises optimisation techniques to optimise MANET performance based on the 

performance models by suggesting the optimum routing protocol for the current context. 

D. Switching protocols: implements the switching technique between the protocols in MANET and 

maintains all the data needing to be transmitted before the switching process in the network. 

Figure 4.1 shows the I-MAN routing protocols optimisation system block diagram and the four 

aforementioned components. Further explanation of how each component in the I-MAN routing protocols 

optimisation system block operates will be given and discussed in detail in the following chapters. Chapter 

5 defines the Simulator settings and presents its results; Chapter 6 defines, investigates, and compares the 
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modelling methods; Chapter 7 defines, investigates, and compares the optimisation techniques employed; 

and Chapter 8 explains the modification in the normal wireless node to adopt the protocol switching 

technique. This chapter also presents the embedding process for the Modeller and the Optimiser in the 

normal wireless node. 

The I-MAN routing protocols optimisation system compares and evaluates the protocols and then finds 

the best protocol for that context. This proposed system utilised the original and widely implemented 

protocols in a similar manner as past researches [3]. The intelligent system includes a list of the evaluated 

routing protocols, as more routing protocols could be added or unwanted routing protocols removed from 

this list. Each protocol evaluated depended on network performance while the network is operating with a 

routing protocol. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: I-MAN routing protocols optimisation system block diagram. 

 

The arrows in Figure 4.1 represent the system’s task sequences. The yellow arrow represents the 

preparation stage, whereas the green arrows represent the case study and implementation process. After 

the Simulator finishes its task, its output (represented by the yellow arrow) will be the required input data 

for the Modeller. 
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The system implementation will start from the first green arrow, the current context; will be passed to the 

Optimiser. All solutions generated by the Optimiser will then be passed to the Modeller to predict the 

network performance for each protocol. The performance metrics will then be calculated and passed to the 

Optimiser to select the optimum protocol. The decision to switch to the optimum protocol will then be 

passed to the nodes, combined with the threshold time at which the entirety of network nodes will adopt 

and operate with this protocol. 

The Modeller block represents the models for the previous network performance history. The more data 

collected for each model, the more accurate the performance Optimiser’s decision will be. After building 

the models for the network performance, the models will act as the Optimiser’s reference.  The Optimiser 

will refer to the models before its decision. 

The flowchart shown in Figure 4.2 lists the intelligent system tasks based on a time scale. The first 

preparation procedure simulates the MANET operation with various routing protocols through different 

network contexts, then collects and sorts MANET performance parameters. The following procedure 

generates the MANET performance models for each operating routing protocol. Then, creating the 

intelligent system (that contains the models aforementioned), the system will be activated when it receives 

the current MANET context. Next, the system will determine the optimum routing protocol after 

optimizing and calculating the network performance as the network operates with each protocol. The 

Optimiser optimum protocol will be checked with the routing protocol on operation. If both routing 

protocols are the same, then no switching order will be send to the nodes; however, if the protocol is 

different, then a switching order will be sent to all the network nodes to switch to the new routing 

protocol. This process will be repeated until the simulation is completed. 

This intelligent system is responding to the network dynamic changes by continuously updating with the 

network context to decide the optimum routing protocol for that period. This means that the network could 

benefit from more than one routing protocol throughout the simulation period. Finally, the Optimiser 

decision does not rely on a single objective, but on an equation. This equation should include the 

performance parameters (objectives) that will help in choosing the optimum routing protocol. 
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Figure 4.2: Flowchart for the I-MAN routing protocols optimisation system design. 
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4.3 MANET Routing Protocol Techniques 

This section contains a description of the MANET routing protocols implemented and evaluated in this 

thesis. Three well known and widely implemented routing protocols have been selected for review, the 

Optimised Link State Routing (OLSR), Dynamic Source Routing (DSR), and Ad hoc On Demand 

Distance Vector (AODV) routing protocols, and are discussed below. 

 

4.3.1 OLSR Routing Protocol 

The Optimised Link State Routing (OLSR) protocol [4] is a Table-Driven protocol based on the traditional 

Link State algorithm (mentioned in Chapter 2). The point-to-point OLSR routing protocol is a non-

uniform proactive protocol. Under the OLSR routing protocol strategy, nodes in the network exchange 

periodical topology information with each other and select a set of neighbouring nodes called MultiPoint 

Relays (MPRs) to retransmit their packets. This technique minimizes the size of control messages and the 

number of rebroadcast nodes during a route update.  

To explain the producer of selecting MPRs [5], Figure 4.3 illustrates how node A selects its MPR set. 

Periodic Hello messages will be broadcasted from node A to all immediate neighbours to swap neighbour 

lists and calculate the MPR set. Node A deduces from neighbour lists the nodes that are two hops away 

and computes the minimum set (MPR set) of one hop relay points vital to reach the two-hop neighbours. 

For example, in Figure 4.3, node A selects nodes E, F, and G to be the MPR set. Since the nodes selected 

cover all the nodes that are two hops away. Each node notifies its neighbours about its MPR set in the 

Hello message. After receiving the Hello message, each node records the selected nodes and calls them 

MPR selectors. The frequency of link state updates is adjusted depending on the changes detected in the 

MPR set. With a stable MPR set, the period is increased until it reaches a refresh interval value, whereas 

with a changing MPR set, the period of link state exchange is set to a minimum value. 

Through link state messages, each node obtains network topology information and constructs its routing 

table. Routes used in OLSR only include MPRs as intermediate nodes, whereas each node determines, in 

terms of hops, an optimal route to every known destination using its topology information (from the 

topology table and neighbouring table), and stores this information in a routing table. Therefore, routes to 

every destination are immediately available when data transmission begins. Any node which is not MPR 

can read and process each packet, but cannot retransmit. 
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Figure 4.3: An illustration of MPR nodes in the OLSR routing protocol [5]. 

 

4.3.2 DSR Routing Protocol Technique 

The Dynamic Source Routing (DSR) protocol [6] is a simple On Demand routing protocol for the 

purposes of source routing. A reactive routing protocol, DSR allows senders to control the routes used in 

routing their packets and also allows multiple routes to any destination. All packets that are sent using 

DSR protocol contain the complete list of nodes which the packet will traverse. Each node should 

maintain a route cache that includes all known source routes. The route cache will be continually updated 

as new routes are learned. When the source’s packets must be sending to some destination, the source first 

checks its route cache. If it has an unexpired route to the destination, it will utilise this route to send the 

packet, but if the node does not have such a route, it initiates the Route discovery procedure mentioned in 

Chapter 2. As shown in Figure 4.4 (a), the source node broadcasts during Route discovery process a route 

request packet with a unique identification number. The route request packet encloses the addresses of the 

destination and the source nodes. The node that is not the destination node or does not see the same route 

request packet as before will attach its IP address to the route request packet and rebroadcast the packet. 

Neighbours of node A 
 
Nodes E, F, G are A’s MPR 
 
Two-hop neighbours of A that are covered by MPR 
 
Wireless links 
 
Links connecting MPR nodes and the two-hop nodes they covered 
 
Links connecting A and its neighbours 



_____________________________________________________________________57 

 

The IP Time To Live (TTL) field will be incremented in each Route discovery in order to control the 

distribution of the route request packets. The route request packets continue to spread until they reach the 

destination node or any other node that has a route to the destination node [7]. 

 

Figure 4.4: Formation of Route discovery in DSR. 

 

As shown in Figure 4.4 (b), the destination node responds to the incoming route request packets and 

creates a route reply packet that encloses the list of nodes which the route request packet has traversed. 

Then, based on a minimal hop count or latency, the source node may select one or more route reply 

packets for a single target node.  

The DSR Maintenance mechanism consists of the route error packets and the acknowledgments. When 

the data link is broken, the node generates these route error packets. Each node that receives a route error 

packet removes the hop in error from its route cache and shortens all routes contained by that hop at the 

breaking point. In addition to route error messages, the acknowledgments from where the node can hear 

the next hop forwarding the packet along the route are useful to verify the correct operation of the route 

links [8]. 

(a) Building of the route record during route discovery 

(b) Propagation of the route reply with the route record
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4.3.3 AODV Routing Protocol Technique 

The Ad hoc On Demand Distance Vector (AODV) Routing Protocol [9] is a reactive routing protocol 

previously mentioned in Chapter 2. AODV borrows the basic Route discovery and the Maintenance 

mechanisms from the DSR protocol, whereas AODV borrows the periodic beaconing and the sequence 

numbering (the hop-to-hop routing vectors) from the Destination Sequenced Distance Vector (DSDV) 

routing protocol [10]. Therefore, the On Demand routing protocol AODV is an optimised distance vector 

routing protocol which finds the routes only when required. Also, AODV employs extensively the 

sequence numbers in control packets to avoid the problem of routing loops (as explained in the next 

section). The AODV protocol is advantageous in that it offers quick adaptation to dynamic link 

conditions, low processing, low memory overhead, and low network utilization. 

When a source node starts Route discovery to a destination that is not included in its routing table, the 

source node broadcasts a route request packet [11], as shown in Figure 4.5 (a). Each route request packet 

does contain the following: the ID field that represents a unique identification for the route request packet, 

the IP addresses for the source node, the IP addresses for the destination node, the destination sequence 

number that specifies the freshness of the control packets, the hop count that maintains the number of 

nodes between the source and the destination, and finally, the control flags. The route request starts with a 

small TTL value that increases in following route requests when the destination is not found. Each 

recipient of the route request packet that has not know the destination IP address or does not maintain a 

fresher route to the destination (in another words, does not maintain larger destination sequence number), 

rebroadcasts the same packet after monotonically incrementing the hop count. If additional copies of the 

same route request are later received, these packets are discarded to reduce overhead. Such intermediate 

nodes also create and preserve a reverse route to the source node for a certain interval of time. 

When the route request packet reaches the destination node or any node that has a fresher route to the 

destination, a route reply packet, as shown in Figure 4.5 (b), is generated and unicast-travelled back to the 

source of the route request packet. Each route reply packet contains the destination sequence number, the 

IP addresses of the source and the destination, the route lifetime, the hop count, and the control flags. This 

guarantees that the route path is being set up bidirectionally. Each intermediate node that receives the 

route reply packet, establishes a forward route to the source’s packet, and transmits the packet in it. In 

cases where a node receives a new route (by a route request or by a route reply) and it has already a route 

‘as fresh’ as the received one, the shortest route will be the one updated. 
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Figure 4.5: AODV Route discovery. 

 

For the Maintenance mechanism, each node makes use of periodic Hello messages when it needs to detect 

link breakages on nodes that it considers as its immediate neighbours. In the case that a link break is 

detected for the next hop of an active route, a route error message is sent to its active neighbours using 

that particular route. Therefore, the mutable information included in the route error message is the list of 

unreachable destinations and their counterparts. 

 

4.3.4 OLSR, DSR, and AODV Loop-Free Technique 

The loop problem can be clarified through the following scenario. Assume an existing route link between 

A and D, as shown in Figure 4.6; next, the link between S and D, which A is not aware of breaks. For 

example, route error message sent by S is lost. Now, assume A wants to send packet to D. It then 

performs a route request that can be replied to via path (S-C-A). Node A will reply since it knows a route 

to D via node B. This would result in a loop (S-C-A-B-S). 

For routing protocols OLSR [4] and AODV [8], an incremental sequence number will avoid the two 

protocols having the loops problem in their routing mechanism. Implementing the sequence number 

technique in the previous example, the presence of the sequence numbers will let S discover that the 

routing information from A is outdated. Node S increments the sequence number when it discovers that 

link S-D is broken. In this way, the new sequence number will be greater than the one stored by A. 
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Figure 4.6: Loop technique. 

 

On the other hand, DSR [6] provides loop-free routing by requiring path information. DSR establishes a 

loop-free route to a destination by carrying the path traversed in route request packets and having the 

reverse path piggy-back on (route reply) packets to lead the way to the source, as shown in Figure 4.4 (a 

and b). However, given a link failure, reliable error updates must be sent to the source, so that a new route 

can be searched. 

 

4.3.5 Comparison of OLSR, DSR, and AODV Routing Protocols 

In this section the main strengths and weaknesses of the three routing protocols, OLSR, DSR, and AODV, 

have been reviewed. The protocols were evaluated based on the techniques each one used, and their 

respective operation conditions. 

4.3.5.1 Strengths of OLSR, DSR, and AODV Routing Protocols 

Here are some major points that delineate the strengths of each technique and define the best operation 

areas for each protocol: 

a. OLSR Strengths 

 OLSR is suited particularly to dense networks. This means that OLSR is not for use in sparse 

networks, as all node neighbours become MPR nodes. In this case, the OLSR becomes a pure Link State 

protocol and must operate as the original Link State algorithm, such that each node propagates its link 

state information to all other nodes in the network [12]. 

 Using the MPR technique minimizes the number of control messages and reduces the message 

flooding overhead. OLSR, furthermore, reduces the number of nodes rebroadcasting link state information 

(updates). In this way, when a node broadcasts a message, all its neighbours will receive the message and 

only the MPR sets will have to forward the link state information [13]. 
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b. DSR Strengths 

 The DSR protocol offers an acceptable performance and overhead in networks of small to 

moderate size. For large networks, however, there will be longer source-destination paths (long route 

cache in each node) and an increase in the source path route that piggy-backs on each packet travelling to 

its destination [6]. 

 DSR technique nodes can store multiple routes to destinations in their route cache, which means 

that there is no need for initiating Route discovery after a breakage if the source node finds a valid route to 

the same destination in its route cache [6]. 

 DSR has a satisfying delay since the nodes can store multiple routes in their route cache. The 

network nodes delay is the time required to search the node cache for a route before forwarding any data 

packets. This is very beneficial in a network with low mobility [14]. 

 DSR does not require any periodic beaconing, or Hello message exchanges. Therefore, nodes can 

enter sleep mode to conserve their power and bandwidth [15]. 

c. AODV Strengths 

 AODV has two important features which allow the protocol to be adaptable to highly dynamic 

networks. First, AODV adopts the destination sequence number technique used by the Destination 

Sequenced Distance Vector (DSDV) in an On Demand way. Destination sequence numbers are important 

to ensure loop-free and up-to-date routes. Second, AODV maintains in each node a base time state 

regarding the utilization of the individual routing table entries, whereas routing table entries will expire if 

not recently used [14]. 

 AODV also reduces the flooding overhead. This occurs because AODV routing information is 

maintained in the node’s next-hop routing tables containing the destinations for which the node currently 

has a route. A routing table entry expires if it has not been used or reactivated for a pre-specified 

expiration time. Therefore, the node has only to maintain the routing information about the active paths. 

The path, then, will be the result of exchanging the portions of the routing table necessary for establishing 

the route [16]. 

 AODV has potentially less routing overheads than DSR, as AODV packets only carry the 

destination address ( A route request packet is small in size because it does not contain information about 

the whole route path), unlike DSR packets which carry an array of addresses [17]. 

 A node operating AODV MAY offers connectivity information by broadcasting local Hello 

messages. A node should only use Hello messages if it is part of an active route. AODV does not require 
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any periodic beaconing for inactive nodes. Therefore, the inactive nodes can enter sleep mode to conserve 

their power and save a considerable amount of bandwidth in the network [18]. 

4.3.5.2 Weaknesses of OLSR, DSR, and AODV Routing Protocols 

This subsection points out the weaknesses of the three routing protocols, as described below: 

a. OLSR Weaknesses 

 OLSR is a Table-Driven protocol that requires periodic beaconing (Hello message exchanges) to 

update the network information [15]. These messages will produce an overhead and load the network. The 

load will increase if the number of nodes in the network increases. The OLSR routing protocol is unlike 

On Demand routing protocols: DSR or AODV, which do not depend on the periodic beaconing in Route 

discovery techniques. This also means that OLSR overhead will grow in a network with high mobility 

because of the protocol’s frequent topology table update. 

b. DSR Weaknesses 

 DSR is not appropriate for a large network as the overhead may consume most of the bandwidth 

[19]. DSR uses source routing that demands every packet should carry the full path address for every hop 

in the route from the source to the destination. This means DSR will not be very effective in large 

networks as the amount of the path carried in the packet will continue to increase when the network 

diameter increases. Also, DSR route replies carry the address of every node along the route [15]. 

c. AODV Weaknesses 

 Nodes operating AODV routing protocol may experience large delays during route construction. 

Like any On Demand routing protocols, AODV need to establish Route discovery between source and 

destination before sending the data packets. Also, if the link failure accrues, Route discovery should be 

initiated, which involves extra delays and bandwidth consumption specially when the size of the network 

increases  [20]. 

4.3.5.3 Characteristics of OLSR, DSR, and AODV Routing Protocols 

Table 4.1 characterizes each of the three protocols in terms of the routing protocol classifications 

mentioned in Chapter 2 and the three routing protocol mechanisms mentioned in this chapter. 
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Table 4.1: OLSR, DSR, and AODV routing protocol characteristics. 

 OLSR DSR AODV 

Routing philosophy Proactive Reactive Reactive 

Network structure  Hierarchical Flat Flat 

Routing metric Hop number 

(shortest path) 

Hop number 

(shortest path) 

Hop number 

(shortest path) 

Broadcasting method Neighbour 

knowledge 

Simple flood Simple flood 

Maintenance Periodically As needed As needed 

Periodic Hello message Yes No Yes on need 

Use sequence numbers Yes No Yes 

Multiple paths No Yes No 

Loop free Yes Yes Yes 

 

4.4 Summary 

Mobile nodes should not be restricted to operating solely in a particular Ad hoc network context. The 

routing scheme should also be able to cope with the performance fluctuation problem. Rather than create 

yet another routing protocol to address these issues, this chapter proposes a radical approach to MANET 

routing protocols: an Intelligent-Mobile Ad hoc Network (I-MAN) routing protocols optimisation system. 

The need for the proposed system arose because degradation of the routing protocol performance is 

always associated with the changes in the network context. The I-MAN routing protocols optimization 

system abstracting this problem to another level: the environment context is taken into account by a 

system that deduces the most appropriate/suitable protocol for the observed conditions. Then, this system, 

represented by the Intelligent node, informs the nodes of the routing protocol to run and thus performs 

optimally even in the case of continuous changes. In this chapter, a novel I-MAN system design has been 
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introduced with this simple idea of including various routing protocols in one system and then selecting 

the best protocol to operate. I-MAN routing protocols optimisation system design relies on four basic 

components: Simulator, Modeller, Optimiser, and Switcher. 

The proposed intelligent system acts like an overlay protocol that triggers routing protocols according to 

the needs of the network. This system is an attempt to enable a mobile node to achieve its best 

performance as it roams through the network, and to provide an automatic routing protocol selection and 

adaptation mechanism based on the current topology of the network. 
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Chapter 5 

MANET Simulation 

 

5.1 Introduction 

Utilising simulation software packages is beneficial to the testing of any new design. Simulation can save 

time, energy, and money as there is no need to order equipment and connect it together to set a scenario. 

For example, the OpnetTM14 software package makes it possible to simulate any communication network 

for wired or wireless networks in a short time, and the scenario can also provide different services. There 

is no doubt about how important it is to establish a test bed for a system to measure its reliability in real 

the world, but this step (the test bed) should come after a successful software implementation. 

This chapter presents simulations for MANET of different network sizes and average mobility utilising 

the OpnetTM14 software package. The main contribution in this chapter is the development of a strategy to 

represent the collected MANET performance metrics against the network context. In Section 5.2, the 

MANET simulation network will be introduced; this section defines the settings for the communication 

model, the movement model, the simulation parameters, and the performance evaluation metrics. The 

network simulation results are then presented in 2D and 3D in Section 5.3. Next, Section 5.3.3 analyses 

the network results and Section 5.4 summarises the findings of this chapter. 

 

5.2 MANET Simulations 

MANET simulations are the first requirement or the first component needed to accomplish the I-MAN 

optimisation system design. The network simulations were implemented utilising the OpnetTM14 modeller. 

This modeller includes a collection of routing protocols; each routing protocol depends on a different 

route discovery mechanism to establish a route to the source destination (as mentioned in Chapter 4). In 

this research, a proactive routing protocol (OLSR) and reactive routing protocols (DSR and AODV) were 

selected. For each of the three MANET routing protocols, the same MANET simulation environment was 

used. 
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5.2.1 Communication Model 

Raw data packets were generated using Poisson’s Inter-Arrival time at a data rate of 1 Mbps. The 

Poisson’s regime is a model in which data is communicated by random discrete occurrences in time that 

obey Poisson’s statistics of arbitrarily time-varying mean [1]. In this way, each node in the network 

generates and sends packets. 

Determining how many levels of network size (the smallest and the largest network sizes to be 

considered) will definitely influence the number of simulations such that if the number of network size 

levels increases, then the number of the network simulations will increase as well (this will be explained 

in detail in Section 5.2.3). 

For each evaluated routing protocol, several simulations were performed. The network size will increase 

in each simulation, starting from a network with 4 nodes (assuming that the smallest realistic network 

could have 4 nodes) and extending to network with 64 nodes (assuming that a reasonably large MANET 

could have 64 nodes). Another point worth noting is that through each simulation, the network size did not 

change; for example, the simulation starting and ending with a network of 64 nodes. 

Consequently, the coverage area will be increased; for the first scenario, the coverage area is 500 m × 500 

m. The network size will then be incremented in steps of 500 m to the maximum of 3.5 km × 3.5 km for 

the last scenario. These simulations were executed to mimic one hour communication time. 

 

5.2.2 Movement Model 

Each node in the simulated scenarios considered had its own Random Walk Mobility Model [2], meaning 

nodes moved for random directions through the whole simulation within the predefined area without any 

pause time. 

Determining how many mobility levels and what are the slowest and the fastest network that should be 

considered in this research will definitely influence the number of simulations; for example, if the number 

of mobility levels increases, then the number of network simulations will also increase (this will be 

explained in detail in Section 5.2.3). 

The packets from a source node to a random destination node were sent considering different levels of 

mobility from stationary network to reasonably fast network. Four levels of user average mobility were 

considered: (0 m/s), (1 m/s), (10 m/s), and (20 m/s). The latter three levels are defined by varying the 

speed of the mobile users. As each individual network node moved with its own trajectory and speed, the 
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network nodes’ speed were summed and averaged to determine the network mobility. Therefore, the 

mobility levels mentioned previously are the average mobility for the whole network. 

 

5.2.3 Simulation Parameters 

The infrastructure-less nature of a MANET, which allows network nodes the freedom to join or leave the 

network at any time, will continuously effect the overall network performance. Therefore, this 

characteristic could be represented by various parameters [3] such as number of traffic sources, node 

bandwidth, node power, node pause time, and all of the parameters mentioned in Chapter 3. In this thesis, 

two important context parameters have been considered to evaluate the network performance: the network 

size and the nodes’ mobility. 

Moreover, the number of simulation scenarios needed for modelling the network depends on two 

important elements: 

1. The number of selected network context parameters. 

2. The number of modelled routing protocols. 

The simulation scenarios will increase and decrease depending on these elements, as expressed by 

Equation (5.1). Assuming that Pc represents the selected network context parameter, Tc is the total network 

context parameters as Tc ≥ 2 and c ≥ 1, and RT is the total number of MANET routing protocols to be 

modelled. 

Therefore, the total number of the created scenarios ST can be given as: 

T

Tc

c
cT RPS

c

 


1
           (5.1) 

In the I-MAN optimisation system design, the simulations considered two context parameters (PC): 

1. Network size level. 

2. Mobility level. 

Assuming that P1 represents the first parameter that is the network size, Nsize represents the selected 

network size, Tsize represents the total number of the network selected cases, and size represents the 

selected case, where size ≥ 1, the equation is the following: 







Tsizesize

size
sizeNP

1
1

          (5.2) 
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Assuming that P2 represents the second parameter, namely mobility levels, Mlevel represents the selected 

node average mobility level in the network, Tlevel represents the total mobility level cases, and level 

represents the mobility level case, where level ≥ 1, then the equation is the following: 







levelTlevel

level
levelMP

1
2

          (5.3) 

Assuming that Rprotocol, Tprotocol, and protocol represent the MANET routing protocol, the total number of 

MANET routing protocol cases used and the protocol number respectively, where protocol ≥ 1 and Tprotocol 

≥ 2, then the equation is as follows: 







Tprotocolprotocol

protocol
protocolT RR

1

         (5.4) 

Combining Equations (5.1), (5.2), and (5.3), the equation for the I-MAN simulations scenarios is as 

follows: 

ST = P1 × P2 × RT          (5.5) 

In Equation (5.5), the first parameter, P1 mentioned in Equation (5.2), considers seven cases of network 

size. Representing various network sizes from small to large, the P1 cases are 4, 9, 16, 25, 36, 49, and 64 

nodes, respectively. The second parameter, P2 mentioned in Equation (5.3), has four levels of mobility. 

The P2 levels are stationary (0 m/s), low (1 m/s), medium (10 m/s), and high (20 m/s). The last parameter, 

RT mentioned in Equation (5.4), considers three routing protocol. From the above it can be determined that 

the total number of simulations needed will be 84 (ST = 7 × 4 × 3). 

 

5.2.4 Performance Evaluation Metrics 

Through the network simulation, many parameters that present the network performance were collected 

and gathered. The correlated parameters were filtered and five important parameters on which to base 

network performance selected; these five metrics also reflect the reaction of the other “not selected” 

metrics. The performance metrics adopted during the comparative analysis are as follows: 

1. Data Drop (bits/s): the total data traffic dropped by the network nodes. 

2. Delay (s): the end-to-end packets delay experienced by all nodes.  

3. Load (bits/s): the total data traffic received by a all node. 
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4. Retransmission Attempt (R. A.) (packets): the total number of retransmission attempts by all the 

network nodes. 

5. Throughput (bits/s): the total number of bits forwarded in all nodes. 

 

5.3 Simulation Results 

For each simulation scenario that ran for one hour of simulation time, the results for each respective 

metric were recorded and stored. In another words, the simulation network scenario collected the 

network’s five performance metrics and presented values every 48 seconds, throughout the simulation 

time from the 0s to 3600s. Therefore, the metrics data collected for the five parameters in the 84 scenarios 

were stored in 420 data files. 

The data collected from all the MANET simulation scenarios should be modelled. Before modelling data, 

the data should go through two stages: first, the averaging stage (explained in Section 5.3.1), then the 

arranging stage (explained in Section 5.3.2). 

 

5.3.1 Averaging Data 

The representative value for each performance parameter should be concluded from the simulation results. 

In each scenario, through all the simulation time, the average value for each performance parameter was 

calculated. In another words, the mean was computed for the data drop, the delay, the load, the 

retransmission attempts (RAs), and the throughput to represent the network performance parameters for 

that scenario. Therefore, for each simulation scenario, five performance values were determined. They 

were demonstrating the efficiency of the network performance during the one hour of simulation. Figures 

5.1 through 5.5 present the averaged five performance metrics: data drop (bits/s), delay (s), load (bits/s), 

RAs (packets) and throughput (bits/s). These 2D performance measurers are plotted against network size, 

where subfigure (a) represents station network 0 (m/s), (b) relates to the average network mobility 1 (m/s), 

(c) relates to the average network mobility 10 (m/s), and (d) relates to the average network mobility 20 

(m/s). Each subfigure contains three curves that represents the MANET operated with one of the three 

routing protocols OLSR, DSR, or AODV. The parameter network size was labelled as “no. of nodes” in 

these graphs. 

 



_____________________________________________________________________71 

 

 

 

 

 

 

 

 

 

Figure 5.1: OLSR, DSR, and AODV routing protocols data drop results utilising MANET simulations 

with an average mobility a) 0 (m/s), b) 1 (m/s), c) 10 (m/s), and d) 20 (m/s). 
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Figure 5.2: OLSR, DSR, and AODV routing protocols delay results utilising MANET simulations with an 

average mobility a) 0 (m/s), b) 1 (m/s), c) 10 (m/s), and d) 20 (m/s). 
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Figure 5.3: OLSR, DSR, and AODV routing protocols load results utilising MANET simulations with an 

average mobility a) 0 (m/s), b) 1 (m/s), c) 10 (m/s), and d) 20 (m/s). 
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Figure 5.4: OLSR, DSR, and AODV routing protocols’ Retransmission Attempt (RA) results utilising 

MANET simulations with an average mobility a) 0 (m/s), b) 1 (m/s), c) 10 (m/s), and d) 20 (m/s). 
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Figure 5.5: OLSR, DSR, and AODV routing protocols throughput results utilising MANET simulations 

with an average mobility a) 0 (m/s), b) 1 (m/s), c) 10 (m/s), and d) 20 (m/s). 
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5.3.2 Arranging Data Related to the Network Context 

The next step is arranging the averaged data against the context in a 3D orientation, where each averaged 

performance metric is related to the two network contexts of network size and average mobility. In the 

proceeding figures, the parameter average mobility was labelled as “mobility.” The inputs were the two 

context parameters, no. of nodes (x-axis) and mobility (y-axis), whereas the z- axis represents the output 

performance parameter. 

10
20

30
40

50
60

0

5

10

15

20
0

2000

4000

6000

8000

10000

No. of NodesMobility (m/s)

O
L

S
R

 D
a

ta
 d

ro
p

(b
its

/s
) 

10
20

30
40

50
60

0

5

10

15

20

1.4

1.6

1.8

2

2.2

2.4

x 10
-3

No. of NodesMobility (m/s)

O
L

S
R

 D
el

a
y(

s)
 

 

10
20

30
40

50
60

0

5

10

15

20

0.5

1

1.5

2

2.5

3

3.5

x 10
5

No. of NodesMobility (m/s)

O
L

S
R

 L
o

ad
 (

b
its

/s
)

10
20

30
40

50
60

0

5

10

15

20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No. of NodesMobility (m/s)

O
L

S
R

 R
.A

. 
(p

a
ck

e
ts

) 

 

10
20

30
40

50
60

0

5

10

15

20

1

2

3

4

x 10
6

No. of NodesMobility (m/s)

O
L

S
R

 T
h

ro
u

g
h

p
u

t 
(b

its
/s

)

 

Figure 5.6: The performance metrics models for OLSR; a) Data drop, b) Delay, c) Load, d) RA, and        

e) Throughput. 
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Figures 5.6, 5.7, and 5.8 show the respective performance of OLSR, DSR, and OLSR routing protocols 

against the no. of nodes and mobility; the subfigures represent (a) data drop, (b) delay, (c) load, (d) RA. 

and (e) throughput. 
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Figure 5.7: The performance metrics models for DSR; a) Data drop, b) Delay, c) Load, d) RA, and           

e) Throughput. 
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Figure 5.8: The performance metrics models for AODV; a) Data drop, b) Delay, c) Load, d) RA, and       

e) Throughput. 
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5.3.3 Results Analysis 

In this section the simulation results presented in Figures 5.1 through 5.5 are analysed and discussed 

below. 

5.3.3.1 Data Drop 

In the four subfigures of Figure 5.1, it appears that there is no data drop for the 4-node network size. 

Figure 5.1 (a) shows that, in spite of increasing the network size, the least data drop was shown in the 

network operating with an OLSR routing protocol. As OLSR is designed to handle scalable networks by 

implementing the MPR technique [24], OLSR proactive mechanism also secures in each MPR node a 

routing table that contains the routes for all possible destinations. This feature enables OLSR to deliver a 

good amount of data without dropping. As shown in the subfigure (a), the station network with 64 nodes 

has five-figure number data drop when operated with a DSR routing protocol, whereas utilising OLSR 

routing with the same network produced a data drop of only three-figure number. 

Figure 5.1 (a) also shows that the DSR routing protocol shows less data drop compared to AODV routing 

protocols, for a network size of up to 36 nodes. When a network size is increased to more than 36 nodes, 

the routing protocols (AODV and DSR) switch positions and the network implementing AODV routing 

protocol achieves less data drop compared to the network that operated with DSR routing protocol. The 

reason behind this is that the DSR routing protocol is not designed for a scalable network because of its 

route cache mechanism [6]. The side effect of the incremental increase in network size is that the DSR 

route cache will also grow. Therefore, the DSR network will suffer from delay increment, as shown in 

Figure 5.2 (a), and load increment, Figure 5.3 (a), which will affect the transmission and cause a 

significant amount of data drop. 

Figure 5.1 (b) shows the different performances for the networks operating with the three protocols. The 

network in this figure is dynamic with average mobility (1 m/s). For a network size of up to 36 nodes, the 

least data drop is shown with AODV, then DSR, followed by the worst network operating on OLSR. With 

a network size of 36 nodes, the best routing protocol is OLSR, followed by DSR, and then AODV; 

whereas with a network size of 49 nodes, the best routing protocol is OLSR, followed by AODV, and then 

DSR. 

In Figure 5.1, (c) and (d) clearly show that for a network size of less than 25 nodes, the least data drop is 

for a network which operates on AODV, followed by a network which operates on DSR, and; the worst 

results are for a network operating OLSR. With a network size ranging from 25 to up to 49 nodes, the best 

routing protocol is AODV, followed by OLSR, and then DSR. With a network size ranging from 49 to up 
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to 64 nodes, the best routing protocol is OLSR, followed by AODV, and DSR. Furthermore, the results in 

Figure 5.1 (c) and (d) show that the AODV routing protocol is efficient for a dynamic network with high 

and medium mobility [8]. 

In Figure 5.1, (a) and (b) when the mobility is low, 0 (m/s) or 1 (m/s), the data started to drop for any 

network size greater than 16 (except in the AODV graph which started from 9, as shown in Figure 5.1 

(a)); whereas when the mobility is medium, 10 (m/s), or high, 20 (m/s), in Figure 5.1 (c) and (d), the data 

started to drop for smaller network sizes, as compared to Figures 5.1 (a) and (b) in which the data started 

to drop from any network size greater than 9 nodes. Approximately, the AODV routing protocol was the 

only protocol in which the network data drop increased linearly in the log scale by increasing the average 

mobility and the network size. 

5.3.3.2 Delay 

As shown in Figure 5.2 (a), the delay for the networks using AODV and DSR protocols are approximately 

the same for a network size of up to 36 nodes. Once this size is exceeded, a rapid increment happens to the 

network delay that operates DSR against an acceptable delay for the network that operates AODV, which 

will continue through the rest of the simulation. However, the OLSR’s delay is a significant small amount 

that does not affected by the network size increase through the simulation compared with the other two 

protocols; that is due to OLSR proactive mechanism that stores update table for the whole network and 

adopts MPR technique that selects the effective neighbour nodes to retransmit the source packets. As 

shown in subfigure (a), a station network of 64 nodes has a delay equivalent to a fraction of a second using 

OLSR routing protocol, whereas the same network delay operating DSR reaches a one figure number. 

In Figure 5.2 (b), the network is operated with average mobility 1 (m/s); the three routing protocols show 

the same attitude as previously seen in Figure 5.2 (a) with a rapid shift in the delay of a network operating 

DSR, for a network size of up to 49 nodes. 

In Figure 5.2, subfigures (c) and (d) show how medium and high mobility can affect the network delay. 

The network operating with DSR showed rapid delay increment for a network size greater than 25 nodes, 

whereas the network operate with AODV showed rapid delay increment for network size greater than 49 

nodes. 

5.3.3.3 Load 

Figure 5.3 (a) shows that the stationary networks operating with the three protocols have approximately 

the same load until the network size is increased to more than 25 nodes, at which point networks operating 

with DSR have the worst load for the duration of the simulation. 
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In Figure 5.3 (b), when the network’s average mobility is 1 (m/s), the networks operating with OLSR and 

DSR have less load than the networks operating with AODV. The load for DSR’s network is clearly better 

than the load for the AODV’s network, up to a network size of more than 36 nodes; beyond this point, the 

load for DSR’s network suffers rapid increment. This observation is supported by the fact that “the 

scalability affects DSR routing protocol” [14]. 

In Figure 5.3, subfigures (a), (b), (c), and (d) show that the load for the OLSR’s network was significantly 

less due to the MPR technique, in spite of the increment in network scalability and mobility, especially in 

subfigures (c) and (d). For networks that operate with On Demand protocols, AODV and DSR have higher 

load due to the routing establishment mechanism. 

5.3.3.4 Retransmission Attempt (RA) 

Figure 5.4 shows that the network operating with an OLSR protocol has delivered most of the network 

packets. Therefore, the need for RA is less than the other networks operated with AODV and DSR routing 

protocols. In a network that operates with a OLSR routing protocol, the node keeps all the neighbouring 

nodes’ addresses in the routing table; this characteristic makes it easier for the node to deliver the packets 

to their destination. However, networks that operate on the On Demand routing protocols, AODV and 

DSR, have to find the destination through establishing a new route if the node does not have the address in 

its routing table. For this reason, many packets may not be delivered and will demand another 

retransmission attempt. 

Figure 5.4 (a) shows that a network operating the DSR routing protocol has less RA than a network that 

operates on AODV for a network size of up to 25 nodes, whereas for a network size more than 25 nodes 

AODV’s network shows less RA compared to DSR’s network. 

In Figure 5.4 (b), the AODV’s and DSR’s network behaviour were similar to their behaviour in Figure 5.4 

(a) as DSR’s network has less RA than a network that operates on AODV routing protocol, for a network 

size increased to up to 36 nodes. When the network size is 49 nodes, the network operates on AODV has 

fewer RA than the DSR network. However, when the network size is 64 nodes, the network operating on 

DSR has fewer RA than the AODV network. 

Increasing the average mobility, as shown in Figures 5.4 (c) and (d), increases the packets’ retransmission 

attempts for a DSR network with a size of 16 nodes. In spite of the increments in the average mobility, 

AODV sustains the previous rate of RA which proves the fact that AODV is designed for a dynamic 

network [8]. 
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5.3.3.5 Throughput 

The four subfigures of Figure 5.5 show that the best throughput was for a network operating with AODV, 

followed by a network operating with OLSR, and lastly a network operating with a DSR routing protocol. 

The AODV routing protocol was able to forward more packets with the mechanism that quickly 

establishes routes and then forwards more packets. 

 

5.4 Summary 

Relating the collected MANET performance parameters against the two network context parameters 

considered in this thesis and presenting them visually in 3D graphs, this chapter describes a novel, 

approach to MANET that has not be explored in previous research. Combining the network contexts in 

one graph to present their effects on a particular network performance will dispel the confusion and set a 

standard of comparison between the protocols. 

This chapter also describes the simulation results for the three MANET protocols AODV, DSR, and 

OLSR operating in different scenarios, with multiple network sizes and multiple average mobility (these 

results also show the protocols characteristics that having been discussed in Chapter 4). A short summary 

and findings for each performance are given below. 

The graphs in Figure 5.1 draw a general conclusion that as the mobility increases; the data drop will 

increase as well. Also, the figure shows that increasing the mobility affects the data drop for the DSR 

operated network more than the ones operated with OLSR and AODV routing protocols, as the DSR data 

drop for a network of 64 nodes reached ten four-figure number (bits/s) with average mobility of 20 (m/s). 

Figure 5.2 clearly shows that, through the whole simulation for the four subfigures, the best delay is for a 

network operating on an OLSR routing protocol, which is related to the MPR mechanism (less message), 

The network  operating on AODV is second; this may be accounted for by the AODV sequence number 

mechanism (drop duplicated messages). The network with the DSR routing protocol is last due to the DSR 

cache route mechanism (carry the full path), as the network scalability and mobility affects DSR routing 

protocol delay. As shown in subfigure (a), when the network size is 36 nodes, DSR’s delay rapidly 

increases. Whereas in subfigures (c) and (d), when the average mobility increases to 10 (m/s) or 20 (m/s), 

respectively, the delay for DSR was increased rapidly with network of 25 nodes (smaller that in subfigure 

(a)). 
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In general, Figure 5.3 showed that the load for the networks operated with On Demand protocols were 

affected by scalability, especially DSR. As shown in subfigure (a), the networks’ load starts to increase 

with a stationary network of 25 nodes and higher. As shown in (b), the loads of networks with average 

mobility 1 (m/s), will start to increase with a network size of 36 nodes and higher. When the networks 

average mobility is increased to 10 (m/s) and 20 (m/s) respectively, as shown in (c) and (d), the network 

will suffer from high load that starts to increase past a network size of 16 nodes. The movement of the 

network nodes breaks the early established route, creating a demand for a Route discovery to establish a 

new route, which in turn causes load over the network. The load for AODV’s network was less than the 

load for DSR’s network the majority of the time; this is related to hop by hop and the sequence number 

mechanisms AODV employs. These mechanism will reduce the load by dropping (that is not forwarding) 

the packets with old sequence numbers, such that only those packets that have the updated sequence 

number will be forwarded. 

Also, Figure 5.3 showed that, for the four subfigures through the simulation time, the least load was for 

the network that operated on the OLSR routing protocol. 

From Figure 5.4, it is clearly shown from the four subfigures that the fewest packets’ retransmission 

attempts were accrued for the network that operated on OLSR routing protocol, with the AODV operated 

network second and the DSR network third. 

Figure 5.5 shows that the best throughput was for a network that operated on AODV, followed by a 

network that operated on OLSR, and lastly, a network that operated on DSR. 

The results show that OLSR has the best results in terms of delay, load, and retransmission attempts, 

whereas AODV has the best throughput. AODV and OLSR perform well with large network sizes and 

high mobility, whereas DSR protocol performs at an acceptable level with lower mobility and smaller 

network sizes. 

The simulation results proved and confirmed that in certain contexts, one of the routing protocols will give 

a better performance than the other. However, when the context changes, the first protocol’s performance 

will degrade whereas the second protocol’s performance will improve. 
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Chapter 6 

Modelling Methodology 
 

6.1 Introduction 

The model’s chief duty is to provide a simplified view of a complex reality. Therefore, the scientific 

model should represent the studied characteristics in a logical way that will yield a realistic view. The aim 

of creating this non-mathematical model is to construct a formal system for which reality is the only 

interpretation [1]. 

In this chapter, two modelling techniques are considered: the empirical modelling technique represented 

by the regression equation (RE), and the Artificial Intelligence (AI) modelling technique represented by 

Artificial Neural Networks (ANN) and Neuro-Fuzzy (NF). As such, there are two main contributions in 

this chapter; the first is employing the modelling techniques to create models to represent the MANET’s 

context and performance, and the second is comparing and selecting one of these techniques to be used as 

the Modeller in I-MAN optimisation system. 

The chapter is organised as follows: in Section 6.2, the empirical model is defined and the regression 

equation explained as an example of such a model; in Section 6.3, first the Artificial Intelligence 

modelling methods are defined and then two artificial intelligent methods, ANN and NF, described and 

explained in detail; in Section 6.4, the aforementioned modelling techniques are employed with MANET; 

in Section 6.4.4, a comparison between the three created MANET models is presented; and finally, 

Section 6.5 includes the summary and relevant conclusions. 

 

6.2 Empirical Modelling 

The word empirical in the American Heritage Dictionary [2] denotes information gained by means of 

observation, experience, or experiment. Therefore, the empirical relationship will be based solely on 

observation rather theory, as an empirical relationship requires only confirmatory data irrespective of a 

theoretical basis. 
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As opposed to analytical modelling, empirical modelling is a popular approach to develop process models 

using experimental data, which is commonly welcomed by industries [3]. If a theoretical explanation is 

found for what were initially empirical relationships, then the latter are no longer considered empirical. 

These empirical relationships are merely approximations. Although in practice they may be so accurate as 

to make this distinction otherwise unnoticeable, at other times the relationships may later be found to only 

hold under certain specific conditions, reducing them to special cases. The regression equation technique 

is a popular empirical technique which will be discussed in the proceeding section. 

 

6.2.1 Regression Equation Models 

An empirical relationship will create a mathematical statement and one or more empirical relationships 

will form an empirical equation. A regression model can be expressed as a mathematical equation that 

characterizes a response metric as a function of the independent factors and a set of parameters. The 

predicted performance y for the regression model is given in the form of a polynomial equation. The latter 

could be either a linear equation of the first order, or a second order equation with first order interaction, 

as in Equation (6.1): 
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The polynomial equation could also be in the form of a third order equation as shown in (6.2), which is 

cubic with second or higher order interaction: 
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where: k is the number of factors; β0 is the mean of y; βi, βij, βii ,βiij, and βiij represent the regression 

coefficients; and finally, xi and xj are the factors’ value for network factor Xi where j ≤ k. The advantage of 

the regression approach is that it results in a physical equation that can be manipulated to allow for the 

capture of both the main and interactive effects among factors. 

The regression equation has been involved in predicting MANET performance, as in paper [4] wherein the 

regression equation develops a performance index and statistical model that can be used as an objective 

measure in the evaluation and comparison of Ad hoc networking protocols. Nogueira et al.[5] also 

employed a linear regression equation to build a MANET framework. Moreover, second order polynomial 

equations in paper [6] helped to model different MANET connectivity levels. 
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6.3 Artificial Intelligent Modelling Methods 

Modelling plays a very import role in designing an artificial system because in modelling one tries to 

uncover what actually happens in the natural system. The artificial models are data driven models; that 

means they rely on pre-defined functions and AI to structure the networks models. The artificial models 

are not empirical models, as they are not the product of mathematical equations alone. 

The model [7] characteristics include: 

a. Reproduction of some features of the natural system it is supposed to describe. 

b. A formulation that should be consistent with what is known about the considered natural system; 

parameters cannot take arbitrary values, the mechanisms and structures of the model must have some 

biological plausibility. 

c. Testable predictions; ideally all the variables and the parameters should be accessible to experiment. 

 

6.3.1 Artificial Neural Networks Models 

Artificial Neural Networks (ANN) are physical cellular networks that are able to acquire, store, and utilise 

experimental knowledge [8]. This technique is a computer-based algorithm which is modelled on the 

structure and behaviour of the neurons in the human brain. 

Artificial neural networks are composed of simple elements operating in parallel. As in nature, the 

network function is determined largely by the connections between elements. A neural network can be 

trained to perform a particular function by adjusting the values of the connections (weights) between 

elements [9]. ANN can be trained to recognize and categorize complex patterns [10]. 

 

6.3.1.1 ANN Training Methods 

Neural networks are commonly trained such that a particular input guides to a specific target. Therefore, 

the network is trained based on a comparison of the network output and the target, until the network 

output matches the target. A large number of input/target pairs are needed to train a network. This training 

method, called the supervised method, is a popular method. Two other methods, the unsupervised and the 

direct design, are also useful for training networks as a network can be obtained without previous training. 

Unsupervised networks can be used, for instance, to identify groups of data. Also, certain types of linear 
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networks and Hopfield networks are examples of such direct design [11]. In summary, there are a variety 

of design and learning techniques that enrich the choices available to the user [12]. 

6.3.1.2 ANN Architecture Types 

There are two types [13] for neural network architecture: feed-forward networks or feedback networks. 

The feed-forward networks permit signals to travel from the input to the output in only one way, which 

means that the output of any layer does not affect that same layer. This architecture is extensively used in 

pattern recognition. 

The feedback networks can have signals travelling in both directions by introducing loops in the network. 

Feedback networks (feed-forwarded back propagation) are very powerful networks and can get extremely 

complicated. Feedback networks are dynamic, or in a state of continuous change, until they reach an 

equilibrium point. They remain at the equilibrium point until the input changes and a new equilibrium 

needs to be found. Feedback architectures are also referred to as interactive or recurrent, although the 

latter term is often used to denote feedback connections in single-layer organizations. 

6.3.1.3 ANN Layers 

In general, an ANN consist of three layers (or groups) of units, wherein a layer of “hidden” units connects 

a layer of “input” units to a layer of “output” units [13]. In the input units, the raw information is fed into 

the network. The hidden unit is determined by the input units and the weights on the connections between 

the input and the hidden units. Finally, the output layer is determined by the hidden units and the weights 

between the hidden and output units. 

The single-layer network will have one hidden layer, whereas the multi-layer network will have multi-

layer hidden layers. Multiple-layer neural networks are quite powerful; the more neurons in a hidden 

layer, the more powerful the network will be. For instance, a network of two layers, in which the first 

layer is sigmoid and the second layer is linear, can be trained comparatively well to approximate any 

function. 

6.3.1.4 ANN Functions 

As mentioned previously, the behaviour of ANNs depend on both the weights and the input-output 

function (transfer function) that is specified (pre-defined) for the units. Typically, the function considered 

is rough approximations and falls into one of three categories [13]: 

1. Linear (or ramp) unit: the function output is proportional to the function total weighted input. 



_____________________________________________________________________89 

 

2. Threshold unit: the function output is set at one of two levels, depending on whether the total input is 

greater or less than the threshold value. 

3. Sigmoid unit: the function output varies continuously with the change in the input. A sigmoid 

function, such as tanh(x), is not a linear function and shows a greater similarity to real neurons than that of 

the linear or threshold units. 

In MANET, ANN was useful as a predictor in paper [14]. This network utilised two types of neural 

networks, Multi-Layer Perceptron (MLP) network and Radial Basis Function (RBF) network, to predict a 

delay scheme for mobile wireless networks. The neural networks based on the nodes’ past experience of 

the network traffic conditions predicted the intelligent delay for future network traffic conditions. 

 

6.3.2 Neuro-Fuzzy Models 

Jang [15] proposed hybridizing ANN with fuzzy logic [16] to create an Adaptive Network Fuzzy 

Inference System (ANFIS) [17]. In another words, ANFIS is a fuzzy inference system implemented in the 

framework of adaptive networks. The popular term for this intelligent system is the neuro-fuzzy (NF) 

system. This system synergizes the two mentioned techniques by combining the human-like reasoning of 

fuzzy systems with the learning capacity and connectionist structure of neural networks. Inspired by 

Takagi-Sugeno-Kang (TSK) or the Sugeno accurate modelling approach [18], ANFIS performs the 

identification of an input-output mapping in the form of a set of N input-output examples, with a fuzzy 

architecture. 

The ANFIS architecture has been employed to model non-linear functions, identify nonlinear online 

components in a control system, and predict a chaotic time series. The main strength of NF systems [19] is 

its universal approximations with the ability to solicit interpretable IF-THEN rules, as the system has the 

fuzzy reasoning with the network calculation. The neuro-fuzzy system solved the two conflicting 

requirements in fuzzy modelling: interpretability versus accuracy. 

In order to model complex nonlinear systems [17], the ANFIS model carries out input space partitioning 

that splits the input space into many local regions from which simple local models are employed. The 

ANFIS uses fuzzy mfs for splitting each input dimension; the input space is covered by mfs with 

overlapping, which means that several local regions can be activated simultaneously by a single input. 

Membership functions (mfs) were first introduced in Zadeh’s paper “fuzzy sets” [20]. 
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6.3.2.1 NF System Layers 

ANFIS can be demonstrated in a five-layer network structure, as shown in Figure 6.1. It can be described 

as a multi-layered feed-forward neural network. 

  

                                                                                          1w  

                                                                                                                           11 fw  

 

                                                                                             2w                         22 fw         

 

 

 

Figure 6.1: ANFIS architecture [17]. 

 

The first layer executes a fuzzification process that includes labelling each input. In the figure above, the 

ANFIS structure has two inputs, x and y, where each input considered four labels; A1, A2, B1, and B2. 

The most popular function used to transform the input in mf is the Gaussian function, where mf has a bell-

shaped function with maximum value equal to 1 and minimum value equal to 0. Both Equations (6.3) and 

(6.4) show implementation of the Gaussian function in Figure 6.1 for two inputs, x and y, 
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where c and d are the mfs' parameters that affected mfs shape; c positions the centre of the peak; and d 

controls the width of Gaussian bell. 

The second layer in Figure 6.1 executes the fuzzy AND of the antecedent part of the fuzzy rules,  
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The third layer in Figure 6.1 normalizes the membership functions (mfs),  
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The fourth layer in Figure 6.1 executes the consequent part of the fuzzy rules using the linear function,  

yqxpf 111           (6.7) 

yqxpf 222           (6.8) 

and finally, the last layer in Figure 6.1 computes the output of the fuzzy system by summing up the 

outputs of the fourth layer. 

2211 fwfwf            (6.9) 

The ANFIS approximation ability to adopt models will depend on the resolution of the input space 

partitioning, which is determined by the number of mfs in ANFIS and the number of layers. 

In the MANET literature, NF has been used in optimisation, but to our knowledge, there has heretofore 

been no attempt to model MANET parameters with the NF system. 

 

6.4 MANET Models 

In this research, data is needed to create the models for a MANET. These data were generated using the 

OpnetTM14 Simulator (mentioned in Chapter 4). The data information related to the 3D MANET graphs 

was ready to be modelled. The regression equation, ANN, and NF defined in the previous sections were 

considered to model MANET; therefore, the data was fed to the three modelling techniques. The network 

contexts considered as inputs included no. of nodes and mobility, and the network performance considered 

as outputs included data drop, delay, load, RA and throughput. 

 

6.4.1 MANET Regression Models 

The Essential Regression software package [21] was implemented to derive the Regression Equation (RE) 

models; this package analyzes quantitative data using polynomial and multiple linear regressions in a 

straightforward and understandable manner. 
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Table 6.1 shows five equations that represent the output performance parameters for each routing 

protocol. Based on either Equation (6.1) or Equation (6.2) in Section 6.2.1, the MANET regression 

equations were either second or third order, where N is the network size and M is the average mobility. 

 

Table 6.1: MANET performance parameters’ regression equations results from operating the routing 

protocols OLSR, DSR, and AODV. 

 

The regression equations for OLSR’s data drop, load, RA, and throughput are square equations with 

second order interaction, whereas OLSR’s delay regression equation is a cubic equation with second order 

interaction. The equations modelled the performance parameters for OLSR, as shown in subfigures (a), 

(b), (c), (d), and (e) in Figure 6.2. 
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Figure 6.2: MANET output performance RE models using OLSR routing protocol. 

 

The regression equations for DSR’s: data drop, delay, load, and RA are cubic equations with second order 

interaction, whereas DSR’s throughput regression equation is a square equation with second order 

interaction. These equations modelled the performance parameters for DSR, as shown in subfigures (a), 

(b), (c), (d), and (e) in Figure 6.3. 

a) 

c) d) 

b) 

e) 
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Figure 6.3: MANET output performance RE models using DSR routing protocol. 

 

The regression equations for AODV’s are cubic equations with second order interaction for data drop, 

delay, load, and throughput. These equations modelled the performance parameters for AODV, as shown 

in subfigures (a), (b), (c), (d), and (e) in Figure 6.4. 

e) 

c) d) 

a) 
b) 
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Figure 6.4: MANET output performance RE models using AODV routing protocol. 

 

6.4.2 ANN MANET Models 

MATLABTM was used to program the neural network modular. The ANN modular is constructed as a 

feed-forwarded back-propagation network that is composed of three layers: input, hidden, and output, as 

illustrated in Figure 6.5. 

a) 

c) d) 

b) 

e) 
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Figure 6.5: ANN MANET model. 

 

The input layer consists of two neurons and the second hidden layer consists of eight neurons, while the 

third layer has one neuron. The hidden layer neurons use a hyperbolic tangent sigmoid function to 

calculate the layer's output, as shown in Equation (6.10). This transfer function is mathematically 

equivalent to the tanh function.  

1))2exp(1(
2)( 


n

nTansig         (6.10) 

where n is define as 

ij

k

j
ji xwn 1

1
1 


          (6.11) 

where xj is the input layer to node j; W1ji is the weight between node j in the input layer and node i in the 

hidden layer; Ө1i is the bias of node i in the hidden layer (it plays the role of an intercept in the linear 

regression); w2i1 is the weight between node i in the hidden layer and the node in the output layer; and Ө21 

is the bias of the node in the output layer. 
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∑
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The output layer corresponds to the performance metric modelled, with a linear transfer function which is 

similar to Equations (6.7) and (6.8). 

Thus, the predicted performance y given by the neural network model shown in Figure 6.5 could be 

expressed as follows: 

))(( 21

8

1
12  


nTansigwpureliny

i
i

       (6.12) 

The ANN models were trained to simulate and present the MANET output performance behaviour each 

time for one of the three protocols (OLSR, DSR, and AODV). For each routing protocol, five ANN 

models were trained. Each model represents one of the five performance parameters against the network 

context; training was performed for 10 epochs. In total, 15 models were developed for the three protocols. 

A well known fact is that ANNs suffer from overtraining problems as the network incorporates the 

inherent “noise” variation of a sample population. As such, MANET models were affected by and suffered 

from this problem in the training process. One of the solutions for this problem was the use of the 

ensemble modelling technique [22]. This technique was employed with MANET models by training 

different neural networks on the same MANET data set. The training generated 10 models in 10 sessions, 

with each training session resulting in a different model. After creating the 10 models, the set of the 

network context parameter for mobility was partitioned to create 30 values, starting from 0 (m/s) and 

ending in 20 (m/s), in the sequence: 0 (m/s), 0.1 (m/s), 0.2 (m/s), 0.3 (m/s),……, 0.9 (m/s), 1 (m/s), 2 

(m/s), 3 (m/s),……9 (m/s), 10 (m/s), 11 (m/s), 12(m/s),…… 19 (m/s), and 20 (m/s); next, the new inputs 

for the mobility and the network size were entered to the 10 trained neural networks. It is an ensemble of 

these 10 models that will be used to create the most dominant MANET, as shown in subfigures (a), (b), 

(c), (d), and (e) in Figures 6.6, 6.7, and 6.8. 

Comparing the MANET original performance models in Figures 5.6, 5.7, and 5.8 in Chapter 5 with ANN 

models, in spite of using the ensemble technique to solve the overtraining problem, some ANN models are 

not representative and corrupted. Specifically in Figure 6.7, the models in subfigures (b) and (d) are 

corrupted between mobility set 10 and 20, as well as in Figure 6.8 subfigure (b) in which the model is 

corrupted between mobility set 20 and 30. 
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Figure 6.6: MANET output performance ANN models using OLSR routing protocol. 

 

 

 

a) 

c) d) 

b) 

e) 
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Figure 6.7: MANET output performance ANN models using DSR routing protocol. 

 

 

a) 

c) d) 

b) 

e) 
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Figure 6.8: MANET output performance ANN models through operating AODV routing protocol. 

 

a) 

c) d) 

b) 

e) 
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6.4.3 NF MANET Models 

MATLABTM was utilised to develop MANET neuro-fuzzy models using the Fuzzy Logic Toolbox. All 

models were created using the ANFIS package. By using a hybrid learning procedure, ANFIS can 

construct an input-output mapping based on both human knowledge (in the form of fuzzy if-then rules) 

and stipulated input-output data pairs. 

The model topology was based on the TSK type; two Gaussian membership functions for the two input 

variables. Depending on the data provided by the MANET Simulator, membership functions (mfs) and 

fuzzy rules are established to create 110 NF rules for the output parameters of the three protocols, as 

shown in Table 6.2. 

 

Table 6.2: Performance’s neuro-fuzzy membership functions and the three protocols’ fuzzy rules. 

Routing 

Protocol 

Linguistic 

Labels 

Data 

Drop 

Retransmission 

Attempt 

Throughput Delay Load 

mf1 × mf2 3×2 3×2 3×3 3×2 3×3 OLSR 

rules 6 6 9 6 9 

mf1 × mf2 2×2 2×2 2×2 2×2 2×2 DSR 

rules 4 4 4 4 4 

mf1 × mf2 3×3 4×3 4×3 3×3 4×3 AODV 

 
rules 9 12 12 9 12 

 

If the output performance data suffers rapid changes, this will demand an increase in the number of 

membership functions. In contrast, if the performance data has smooth changes, the membership functions 

are needed less. In another words, when the number of membership functions increase, the rapid changes 

that occur in the model will be clearly reflected. 
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The number of rules will be affected too, as it is the product of multiplying the membership functions 

(mfs) of the input parameters as presented in Equation (6.5). Therefore, the increase in the mfs will also 

lead to an increase in the rules. For example, referring to Table 6.2, the AODV load model requires (4 mfs 

× 3 mfs). Accordingly, 12 fuzzy rules should be considered for the AODV load model, since the number 

of rules depends on the number of mfs. In contrast, all DSR performance models require (2 mfs × 2 mfs), 

which produce 4 fuzzy rules. 

The rules and the weight for each input parameter will determine the final output model for each protocol 

performance, with each model represented by its own number of rules. The training was performed for 

three epochs. The MANET NF model’s structures are the same as in Figure 6.1, the only difference is that 

MANET inputs parameters: A (no. of nodes) and B (mobility) not always converted into two objects, as 

they will converted to more than two objectives. Equations from (6.3) through (6.8) are implemented to 

create the NF model for each output performance parameter. For each routing protocol, five NF models 

were trained. In total, 15 models were developed for the three protocols. 

The 3D shapes shown in subfigures (a), (b), (c), (d), and (e) in Figures 6.9, 6.10, and 6.11 present the NF 

models for each routing protocol. The models show how each protocol parameter responds with respect to 

the two context parameters as each subfigure represents data for a particular protocol performance. For 

example, subgroup figure (a) in Figure 6.11 represents AODV delay response relating to a mobility range 

of 0 to 20 (m/s) and network size varying between 4 and 64 nodes. 
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Figure 6.9: MANET output performance NF models using OLSR routing protocol. 

a) 

c) d) 

b) 

e) 
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Figure 6.10: MANET output performance NF models using DSR routing protocol. 

a) 

c) d) 

b) 

e) 
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Figure 6.11: MANET output performance NF models using AODV routing protocol. 

 

a) 

c) d) 

b) 

e) 



_____________________________________________________________________106 

 

6.4.4 MANET Models Comparison 

MANET performance models are very useful for prediction purposes and are helpful in the decision 

making process; the Optimiser proposed by this thesis will therefore rely on these models to predict the 

output performance for the system and then decide the optimum protocol. As such, the more accurate the 

models are, the more accurate the prediction obtained by the decision making process. 

Therefore the results of the three different techniques: RE, ANN, and NF, respectively, and the MANET 

performance models in Figures 6.2 through 6.11 should be compared to first determine the best models 

and then select the best MANET modelling technique. 

The regression models, in spite of having second and third order equations, fail to interpret the changes in 

the performance data in a representative curvy model, whereas AI (ANN or NF) models represent 

MANET performance more realistically. Comparing the AI models together, NF models are smoother, 

more efficient, and more accurate than ANN. To present a MANET parameter, ANN models bend and 

curve more than NF models through their training epochs (the overtraining problem corrupted the ANN 

models). 

A quantitative analysis was performed to choose the best representative MANET models. For each output 

performance parameter, the Root Mean Square Error (RMSE) of the actual data (Doriginal) and the model 

data (Dmodel) was calculated, as defined in Equation (6.13): 

n

DD
RMSE

n

i
ioriginalModel 

 1

2)(
        (6.13) 

Tables 6.3, 6.4, and 6.5 present RMSE calculation results utilising RE, ANN, and NF for MANET 

employing OLSR, DSR, and ADOV routing protocols, respectively. For the four performance outputs 

delay, load, RA, and throughput, the RMSE of the NF models was the best. The conclusion drawn from 

the tables’ results is that the NF models best represent MANET performance and therefore NF models will 

be helpful to the proposed system Optimiser. 
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Table 6.3: Root Mean Square Error for MANET output parameters utilising OLSR routing protocol. 

OLSR 

RMSE RE ANN NF 

Data Drop(bits/s) 161 35 31 

Delay (s) 0.0000309 0.0000998 0.0000109 

Load (bits/s) 6420 6540 1650 

RA (packets) 0.0145 0.008 0.0034628 

Throughput (bits/s) 185000 6530 246000 

 

 

 

Table 6.4: Root Mean Square Error for MANET output parameters utilising DSR routing protocol. 

DSR 

RMSE RE ANN NF 

Data Drop(bits/s) 10200 7400 1890 

Delay (s) 3.5906 3.4121 0.82681621 

Load (bits/s) 215000 211000 195000 

RA (packets) 0.1988 0.1831 0.03094911 

Throughput (bits/s) 242000 192000 55200 
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Table 6.5: Root Mean Square Error for MANET output parameters utilising AODV routing protocol. 

AODV 

RMSE RE ANN NF 

Data Drop(bits/s) 2230 392 147 

Delay (s) 0.3657 0.032 0.01020036 

Load (bits/s) 17900 36200 1870 

RA (packets) 0.1094 0.4414 0.00843813 

Throughput (bits/s) 207000 250000 1270 

 

6.5 Summary 

The models created in this chapter employed two modelling approaches. The empirical approach was 

represented by regression equations and the AI approach was represented by artificial neural networks 

(ANN) and neuro-fuzzy (NF) networks. The models characterize each routing protocol, as each model 

represents the protocol’s output parameter response and was trained to represent the network history, as 

well as predict the network performance behaviour for any network size from 4 to up to 64 nodes, and an 

average mobility from 0 (m/s) to up to 20 (m/s) (not merely the 7 levels of network size and the 4 levels of 

average mobility considered in Chapter 5).  

In this chapter, a quantitative comparison of the MANET models created by the three modelling 

approaches (RE, ANN, and NF) was also undertaken to evaluate each model. This led to the conclusion 

that the NF technique is the best technique to represent MANET performance models that support the 

decision to choose the optimum routing protocol. 
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Chapter 7 

Intelligent Optimisation Techniques 

 

7.1 Introduction 

Heuristic methods are defined as the experience-based methods that help in problem solving, learning, 

and knowledge discovery [1]. Additionally, a metaheuristic algorithm is a set of algorithmic concepts 

that can be used to define heuristic methods applicable to a wide set of different problems. In another 

word, metaheuristic is a general-purpose algorithmic framework that can be applied to different 

optimisation problems with relatively few modifications [2]. Artificial intelligence (AI) techniques are 

metaheuristic methods, such as the ANN and NF mentioned in Chapter 6, as well as intelligent 

optimisation techniques. 

In this chapter, two intelligent computation techniques, GA and PSO, have been emphasized. These AI 

techniques are defined and the main functions for each technique introduced. In this chapter, there are 

two main contributions; the first is employing two intelligent optimisation techniques as predictors to 

the MANET, and the second is selecting one of these techniques to be used as the Optimiser for the I-

MAN optimisation system. 

In Section 7.2, intelligent computing optimisation techniques are defined and then two main intelligent 

optimisation techniques, the Evolutionary Computation and Swarm Intelligence, explained. In Section 

7.3, Genetic Algorithm (GA) is presented as an example of Evolutionary Computation whereas in 

Section 7.4, Particle Swarm Optimisation (PSO) is presented as an example of swarm intelligence. In 

Section 7.5, GA and PSO are briefly compared. In Section 7.6, network context cases and the 

Optimiser configurations are determined to implement with GA and PSO as the MANET Optimisers. 

This section also gives the module results for each Optimiser and evaluates them. The validation table 

confirmed the MANET routing problem mentioned in Section 1.2.2 by selecting different routing 

protocols for different context. The best Optimiser is then selected by comparing the Optimisers’ best 

objective. Finally, Section 7.7 concludes the chapter with a summary. 
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7.2 Intelligent Computing Optimisation Methods 

The intelligent optimisation techniques were implemented to solve complex problems on a realistic 

scale and yielded satisfactory results. 

The calls by the Journal of Information Technology Research: Nature-inspired Computing and 

Applications classify the intelligence optimisation techniques under the following categories: 

 Evolutionary Computation (comprising Genetic Algorithm) 

 Swarm Intelligence Computing (comprising Particle swarm optimisation, Ant colony optimisation, 

Fish school search, and Artificial Bee Colony Algorithms) 

 Others such as Weed invasion optimisation. 

The emphasis of this chapter is on explaining and implementing Genetic Algorithm (GA), the most 

popular form of Evolutionary Computation [3]. Particle Swarm Optimisation (PSO) that represent 

Swarm Intelligence is also explained and implemented, as this technique demonstrated better results in 

a way faster and cheaper than other methods [4]. Therefore, the other optimisation techniques were not 

considered in this thesis. 

 

7.2.1 Evolutionary Computation 

Evolutionary Computation is the general term for several computational techniques that are based to 

some degree on the evolution of biological life in the natural world. Evolutionary Computation [5] 

uses an iterative process such as growth or development in a population. This population is then 

selected in a guided random search to achieve the desired end. 

The common use of an Evolutionary Computation Algorithm (EA) requires four elements [6]: 

A. An evaluation fitness function that determines the quality of any candidate solution in quantitative 

terms, 

B. A representation or data structure that the computer uses to store solutions, 

C. A random variation operator (or operators) that transforms “parents” into “offspring,” and 

D. A mean of selecting the surviving solutions for the next generation. 

In addition, the process must be initialized with a population of candidate solutions to the task at hand. 

This is often accomplished by seeding the first population with completely random solutions. 
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7.2.2 Swarm Intelligence 

Swarm Intelligence (SI) is the property of a system whereby the collective behaviours of 

unsophisticated agents interacting locally with their environment cause coherent functional global 

patterns to emerge [7]. SI provides a base with which it is possible to explore collective (or 

distributed) problem solving without centralized control or the provision of a global model. SI 

evolution first searches the environment for good regions ,and after finding a good region of the search 

space, looks for the best point in that region [8]. 

 

7.3 Genetic Algorithm 

Genetic Algorithm (GA) is an exploratory search and optimisation method that was devised based on 

the principles of natural biological evolution and population genetics [9]. As mentioned in the 

introduction, GA is a metaheuristic approach which does not require mathematical descriptions of the 

optimisation problem, but instead relies on the cost function in order to assess the fitness of a 

particular solution to the problem in question. GA, as such, is capable of providing a robust and 

efficient search in a complex space. The powerful ability of GA optimisation led to interest in its 

performance for global optimisation on a large scale. 

The flowchart shown in Figure 7.1 illustrates the main operations of a GA in sequence. 



_____________________________________________________________________114 

 

 

Figure 7.1: Typical Genetic Algorithm flowchart. 

 

As shown in Figure 7.1, the GA procedure includes the following processes: 

A. Population initialization: Possible solution candidates are initialized by randomly generating a 

population of individual chromosomes, with each representing a different solution to the problem. The 

population in each generation is determined by the number of chromosomes. The first column in Table 

7.1 represents the chromosome population. 

B. Encoding: In computer science, the problem is encoded into a set of strings (chromosomes) 

and each individual encoded into binary string that contains a well-defined number of bits (1's and 0's). 

An example of this is shown in Figure 7.2 (a), whereas a chromosome that is an array of genes 

converted into either 0s or 1s is shown in Figure 7.2 (b). 

Reproduction Yes 

No 

Population Initialization 

Ranking 

Terminate 
? 

Fitness Evaluation 

End

Start 

Encoding 

Selection 

Crossover 

Mutation 
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Figure 7.2: Chromosome presentation. 

 

C. Evaluation: This process contains a predefined fitness function that evaluates each member of 

the population. A fitness value is assigned to determine how “good” each string is, as each string 

represent a solution. The higher the fitness value of an individual string, the higher its chance of 

survival and reproduction. The second column in Table 7.1 shows an example of fitness function 

results for a chromosome population, where the value for each function was selected randomly in 

order to explain the GA evaluation process. The third column in the figure represents the chromosome 

fitness evaluation level from (1-10), with the most fit chromosome scoring 10 and the least scoring 1. 

Table 7.1: GA chromosome population, evaluation function and ranking processes. 

Chromosome 
population 

Fitness function Evaluation 
level 

Ranking 

Chromosome 1 f(Chromosome 1) = 0.5 5 Chromosome 9 

Chromosome 2 f(Chromosome 2) = 0.25 3 Chromosome 10 

Chromosome 3 f(Chromosome 3) = 0.45 4 Chromosome 4 

Chromosome 4 f(Chromosome 4) = 0.84 8 Chromosome 7 

Chromosome 5 f(Chromosome 5) = 0.05 1 Chromosome 6 

Chromosome 6 f(Chromosome 6) = 0.7 6 Chromosome 1 

Chromosome 7 f(Chromosome 7) = 0.79 7 Chromosome 3 

Chromosome 8 f(Chromosome 8) = 0.06 2 Chromosome 2 

Chromosome 9 f(Chromosome 9) = 0.95 10 Chromosome 8 

Chromosome 10 f(Chromosome 10) = 0.83 9 Chromosome 5 

A   B    C    D   E Gene 1     0    1    0   1 

Chromosome                                                           Binary chromosome 
 

(a) Normal chromosome                                           (b) GA chromosome 
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In the reproduction process, new offspring will be created through random variation; the reproduction 

consists of ranking, selection, crossover, and mutation. 

D. Ranking: The fittest individuals are ranked according to their evaluation level, as shown in the 

fourth column in Table 7.1. This operation models the natural mechanism “survival of the fittest.” 

Fitter solutions (individuals with a highest fitness value) survive and are copied into the next 

generation while the weak ones perish. 

E. Selection: This process decides the chromosomes that will be forwarded to the next operation, 

or the crossover (see below). The two most popular selection methods are the roulette wheel and 

tournament selection methods. 

In the roulette wheel method, a chromosome is selected randomly from the range (0 - 1). The roulette 

wheel contains the chromosome population (as shown in Figure 7.3), as each chromosome is 

represented by a slot. The slot width varies depending on the chromosome fitness function (the second 

column in Table 7.1), where the slot width increases with an increase in the chromosome fitness 

function. Therefore, the probability of “dropping the ball” for the chromosome with the highest fitness 

will, in this way, also be increased. This method was adopted in this chapter through implementing 

GA with MANET. 

In the tournament method [10], a number of chromosomes are picked randomly from the population to 

form a “tournament” pool. The two chromosomes with the highest fitness functions are then selected 

from this tournament pool as parents. 

 

 

Figure 7.3: GA roulette wheel selection. 
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F. Crossover: In order to create a better population than the initial one, a mating process is 

carried out among the fittest individuals in the previous generation, since the relative fitness of each 

individual is used as a criterion for choice. Hence, the selected individuals are randomly combined in 

pairs to produce two offspring by crossing over parts of their chromosomes at a randomly chosen 

position of the string. These new offspring are supposed to present a better solution to the problem 

[11]. The three known crossover types, one-point, two-point, and uniform, are presented in Figure 7.4. 

In the one-point crossover (Figure 7.4 (a)), two parent strings are cut at the same point and offspring 

are formed by combining complementary genes from the parents. In two-point crossover (Figure 7.4 

(b)), the two parents are cut at two points and offspring are formed by inserting a central sequence 

from the first parent into the second parent, and vice versa. Other types of crossover are possible, such 

as uniform crossover (Figure 7.4 (c)), in which offspring are generated by taking a certain number of 

genes from each parent, with no restriction on where these genes occur in the string. 

 

 

Figure 7.4: Genetic Algorithm crossover types: (a) One-point, (b) Two-point, and (c) Uniform. 

 

1     0    1    0    1 

0     1    0    0   0 

1     0    1    0    1 
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1     0    1    0    1 

0     1    0    0   0 

1     1    1    0    0 
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0     1     1    0    1 

1     0    0    0   0 

1     1    0    0    1 

0     0    1    0   0 
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(a) One-point 

(b) Two-point 

(c) Uniform 



_____________________________________________________________________118 

 

G. Mutation: In order to provide extra excitation to the generation process, randomly chosen bits 

in the strings are inverted (0's to 1's and 1's to 0's), as shown in Figure 7.5. This mechanism is known 

as mutation and helps to speed up convergence by preventing the population from being dominated by 

the same individuals. A compromise, however, should be reached between too much or too little 

excitation by choosing a small probability of mutation. 

                                                        

Figure 7.5: GA mutation. 

 

The generational process is repeated until a termination condition has been reached. Common 

terminating conditions are listed below [12]: 

 A solution is found that satisfies the minimum criteria; 

 A fixed number of generations is reached; 

 The allocated budget (computation time/money) is reached; 

 The highest ranking solution's fitness has reached, or is reaching, a plateau such that 

successive iterations no longer produce better results; 

 A manual inspection is performed; and 

 Any combination of the above. 

All in all, this ensures that the solution set is never empty. 

In MANET, GA have been involve in solving route problems by selecting the shortest path [13] and 

developing optimised routing protocols such as [14] and [15]. Also, GA was combined with ANN, as 

in paper [16], for quick route rebuilding. 

 

7.4 PSO Algorithm 

Particle Swarm Optimisation (PSO) is a global optimisation technique that finds the best solution for 

the problem, presented as a point and a velocity. Based on certain metrics, each particle assigns a 

value to the position it has and also remembers the best position it has seen. The particle then 

communicates the best position to the other swarm members. Therefore, the particles will adjust their 

1     0    1    0    1 

1     1    1    0   1 
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own positions and velocity based on this information. The communication can be common to the 

whole swarm, or be divided into local neighbourhoods of particles [17]. 

The general characteristics of particle swarm algorithm are as follows [18]: 

One, PSO employs a population of particles. 

Two, PSO has the “traditional” topology gbest and pbest to describe the interconnections among the 

particles. The gbest topology is considered the fully interconnected population as every member of the 

population can be influenced by every other member. In another words, the particles can be affected 

by the individual that has found the best solution so far. Therefore, the responsibility of gbest is 

ultimately to track the best solution found. The pbest topology is considered as a partially 

interconnected population in which every particle is connected to the neighbouring particles in the 

population array. 

Three, every particle changes its position according to the change rule (known as position equation), 

as shown in Equation (7.2). 

Four, as shown in Equation (7.1), the interaction rule (known as velocity equation) determines the 

next point of the particle which will be tested in the search space, wherein the particle’s previous 

success in the search space, along with other particles’ previous success, is considered . 

Putting the previous characteristics in practice, Clerc and Kennedy [19] presented a simplified 

deterministic version of the particle swarm. As shown in Figure 7.6 and the flowchart in Figure 7.7 the 

particle’s population is initialized with random positions x(t) and velocities v(t), and a cost function is 

evaluated using the particle’s positional coordinates as input values. Positions and velocities [20] are 

adjusted with the function that evaluated the new coordinates at each time step, depending on 

Equations (7.1) and (7.2), respectively. 

 

 

 

 

 

 

 

 

Figure 7.6: Concept of modification of a searching point by PSO. 
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When a particle discovers a pattern that is better than any it had previously found, it stores the 

coordinates in pbest(t). The difference between pbest (the best point found so far) and the individual’s 

current position is stochastically added to the current velocity, causing the trajectory to oscillate 

around that point. Further, each particle is defined within the context of a topological neighbourhood  

 

 

 

Figure 7.7: Typical flowchart for Particle Swarm Optimisation. 
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comprising itself and some other particles in the population. The stochastically weighted difference 

between the neighbourhood’s best position gbest(t) and the individual’s current position is also added 

to its velocity, adjusting it for the next time step. These adjustments to the particle’s movement 

through space cause it to search around the two best positions, as shown in the equation below: 

))()(())()(()()1( 2211 txtgbestrtxtpbestrtwvtv      (7.1) 

where w is the inertia weight that can be either a constant or a value that changes linearly with the 

time; φ1 and φ2 are called “cognitive” and “social” parameters, respectively, and are random positive 

constants that weight the influence of the two different swarm memories; and r1 and r2 are random 

numbers between 0 and 1. 

After the velocity vector had been calculated, the positions of the particles were updated according to 

the equation below: 

)1()()1(  tvtxtx         (7.2) 

PSO was utilised in the Ad hoc network to satisfy some network requirements and develop routing 

protocol, as exemplified by papers [21] and [22]. Also, the PSO algorithm was involved in sensor 

networks to create energy-efficient networks, as in papers [23] and [24]. 

 

7.5 Comparison between GA and PSO 

In this section, the main differences between the two investigated algorithms, GA and PSO, will be 

presented. While both algorithms use the fitness concept, they differ in other concepts that are listed in 

the table below. 

Table 7.2: GA and PSO comparison. 

 GA PSO 

1. Implements the survival of the 

fittest 

All its particles kept as members of the population through 

the course of the run 

2. Has selection operation  Has no selection operation 

3. Has crossover algorithm The adjustment toward the best p(t) and g(t) 

4. Has mutation algorithm Balance is achieved through the inertial weight factor (w)  
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7.6 Intelligent MANET Optimisation 

In contrast to the traditional problem solving techniques [6], the metaheurstic algorithms are often 

much faster and more adaptable to changes in the environment because the knowledge regarding how 

to solve a problem is contained in the collection of individual solutions that has survived up to that 

point. This important characteristic has led to the utilisation of the evolutionary algorithms in MANET 

routing protocol optimisation. 

In this thesis, the GA and PSO metaheurstic optimisation techniques are employed to search for the 

best fitted parameters for the proposed intelligent system; the Optimiser compares and evaluates the 

performance of the routing protocol in operation with the performance of other protocols in the same 

network context. 

 

7.6.1 Determined the Network Context Cases 

Before examining the two algorithms as Optimisers, a validation case (Table 7.3) was constructed to 

contain all the possible cases for the two input contexts, network size and average mobility. For 

example, Case 1 has a large and fast network, whereas Case 9 has a small and slow network. 

 

Table 7.3: Validation cases. 

 Case no. Network size Average mobility (m/s) 

Case 1 Large Fast 

Case 2 Large Medium speed 

Case 3 Large Slow 

Case 4 Medium Fast 

Case 5 Medium Medium speed 

Case 6 Medium Slow 

Case 7 Small Fast 

Case 8 Small Medium speed 

Case 9 Small Slow 

 

To convert the label of the network sizes (large, medium, and small) and average mobility (fast, 

medium, and slow speed) into quantitative values, each context parameter was classified into three 
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fields, as shown in Table 7.4 for the network size and Table 7.5 for the average mobility. The data 

collected for the network size started from a lower limit of 4 nodes and ended up with an upper limit 

of 64 nodes, whereas the data collected for the average mobility started from 0 (m/s) and ended up 

with 20 (m/s). 

The row (From - to) in Table 7.4 classified MANET by the following size criteria: 

A small network: 4 nodes ≤ small network ≤ 17 nodes 

A medium-sized network: 18 nodes ≤ medium network ≤ 36 nodes 

A large network: 37 nodes ≤ large network ≤ 64 nodes. 

 

Table 7.4: Network size classifications. 

Network size Small  Medium  Large 

From - to 4 - 17 18 - 36 37 - 64 

The cases studied  8 20 62 

 

The row (From - to) in Table 7.5 classified MANET by the following mobility criteria: 

A slow network: 0 (m/s) ≤ slow network ≤ 6 (m/s) 

A network with medium speed: 6 (m/s) ≤ medium speed network ≤ 13 (m/s). 

A fast network: 20 (m/s) ≤ fast network ≤ 13 (m/s). 

 

Table 7.5: Average mobility classifications. 

Mobility (m/s) Slow Medium Fast 

From - to 0 - 6 6.1 - 13 13.1 - 20 

The cases studied 3 11 18 

 

Then, for each classification field (column), one value is randomly selected to represent the field, as 

shown by the last rows in Tables 7.4 and 7.5. For example, number 8 selected randomly from the 

range (4 nodes ≤ small network ≤ 17 nodes) to present a small network. Therefore, the numbers in the 

second rows of Tables 7.4 and 7.5 will replace the labels in Table 7.3 to represent the network context 

that will be considered by the GA and PSO Optimisers. The final values are presented in the second 

and third columns of the validation table for each Optimiser in Tables 7.6 and 7.7. 
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7.6.2 The Optimisers Configurations 

The two algorithms GA and PSO were employed as MANET Optimisers to find and select the 

optimum routing protocol based on the output performance. Both GA and PSO Optimisers were 

programmed in MATLABTM. 

The NF models were supplied to both Optimisers; where each output parameter was modelled 

separately against the input parameters, each Optimiser normalizes the five performance parameters 

then merges them into one equation (cost function), and performs calculations for this equation in both 

Optimisers. There are many methods [25] to implement a parameter’s normalization; the selected 

method depends on the available and known data. Thus, for the normalization in this thesis, the 

parameters depend on the equation below, as the maximum and the minimum values are known for 

each parameter: 

Normalized performance parameter
minmax

min

parameterparameter

parameterparameter





    (7.3)

 

The cost function is the Mean Square (MS) of the normalized performance parameter, as shown 

below: 

Cost function  
5

)1()()()( 22222 ThroughputDelayLoadDatadropRA 
    (7.4) 

From the Optimiser’s decision it can be concluded that, depending on the cost function, it will select 

the routing protocol with the minimum MS to be the optimum routing protocol for that iteration. For 

each iteration (or generation) this selection process will be repeated. 

The GA and the PSO optimisation process will result in a number of solutions equal to the iteration or 

the generation number. The selected solution, that is the optimum routing protocol, will be the one 

with the best objective (the minimum MS). 

 

7.6.3 MANET Optimisation 

Each Optimiser needs to be supplied with two inputs; the network size and the nodes average mobility 

to start its computing. Nine cases were studied based on Table 7.3, as in each case the inputs selected 

depended on the second rows of Tables 7.4 and 7.5. 

 

7.6.3.1 GA MANET Optimiser 

The GA Optimiser will base its decision on the outputs of the neuro-fuzzy models to find the optimum 

protocol that must be adopted. The GA was set with 3 bits of chromosome length for the three 



_____________________________________________________________________125 

 

parameters (network size, average mobility, and protocol’s name), with the chromosome value 

randomly selected between 0 and 250 and then converted to binary. The population size was 10 with 

average ranking, the mutation was 0.06, and the crossover probability was 0.95. Finally, the GA went 

through 12 generations to find the optimal solution. Table 7.6 shows the GA’s optimum routing 

protocol solution for each case, the solution best objective amplitude, and the generation number for 

that solution. 

Table 7.6: Genetic Algorithm module results. 

GA inputs GA outputs 

Case no. 

Network 

size 

Average 

mobility (m/s) 

Routing 

protocol 

Best 

objective 

Generation 

no. 

case 1 62 18 AODV 0.5288 10 

case 2 62 11 OLSR 0.4874 11 

case 3 62 3 OLSR 0.9596 10 

case 4 20 18 AODV 0.976 1 

case 5 20 11 DSR 1.0959 1 

case 6 20 3 DSR 1.0035 1 

case 7 8 18 AODV 0.9983 8 

case 8 8 11 AODV 1.0718 1 

case 9 8 3 DSR 0.9981 10 

 

The Pseudo-code for MANET GA is shown in Figure 7.8. 

 

Figure 7.8: MANET GA pseudo-code. 

1. Generate initial population of chromosomes of size 10:x1,x2,x3...,x10 
2.  Repeat 
3.  Calculate the fitness of each chromosome: f(x1), f(x2),..., f(x10) 
4.  Evaluate the individual fitnesses of the population. 
5.  Select pairs of average-ranking individuals to reproduce. 
6.   Select a pair of chromosomes for the crossover and the mutation. 
7.   process. 
8.   Change the genes values to the offspring chromosomes. 
9.  Place the resulting chromosomes in the new population. 
10.   If the size of the new generation is not equal to 10 go to 3 
11.   Replace the current chromosome population with the new population. 
12. Until terminating condition 
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7.6.3.2 PSO MANET Optimiser 

The PSO Optimiser was set with three-dimension swarm; the dimensions represent the inputs 

(network size, average mobility, and protocol’s name). The size of the swarm was 10, which was 

iterated 10 times; the error accepted was set to be less than 1×10-10. The PSO Optimiser used the 

practical swarm optimisation for the velocity and the position equations, as in Equations (7.1) and 

(7.2). The Pseudo-code for MANET PSO is shown in Figure 7.9. 

 

Figure 7.9: MANET PSO Pseudo-codes. 

 

The optimum routing protocol selected by PSO with its best objective and its iteration number is 

shown in Table 7.7. 

Table 7.7: Practical Swarm Optimisation module results. 

PSO inputs PSO outputs 
Case 

no. Network 

size 

Average mobility 

(m/s) 

Routing 

protocol 

Best 

objective 

Iteration 

no. 

case 1 62 18 AODV 0.324004 7 

case 2 62 11 OLSR 0.323958 1 

case 3 62 3 OLSR 0.323958 5 

case 4 20 18 AODV 0.324002 8 

case 5 20 11 DSR 0.323958 9 

case 6 20 3 DSR 0.323962 1 

case 7 8 18 AODV 0.518232 5 

case 8 8 11 AODV 0.570085 6 

case 9 8 3 DSR 0.323977 7 

1. Initialize the three dimensions swarm, 
2.  Do: 
3.   For each particle: 
4.    Calculate fitness value, 
5.    If the fitness value is better than the best fitness value 
6.     (pbest) in history, 
7.     Set current value as the new pbest, 
8.   End 
9.   Find in the best pbest 
10.  Set best pbest as the new gbest, 
11.  Calculate particle velocity according to the velocity equation 
12.  Update particle position according to the position equation 
13. While maximum iterations not equal to 10 or minimum accepted error 
14.  is not less than 1×10-10. 



_____________________________________________________________________127 

 

7.6.4 Creating the Validation Table 

Tables 7.6 and 7.7 show that GA and PSO Optimisers chose the same routing protocols for the same 

cases, but most importantly, that the tables’ results confirm that the Optimisers select different routing 

protocols through different cases. 

To illustrate the point of view that an optimum routing protocol for a MANET context cannot be the 

same as for another context, and to demonstrate a possible scenario that could happen in MANET, a 

new validation table (Table 7.8) was established which listed all the possible changes to the two 

network context parameters for network size and average mobility. 

Table 7.8: The validation table: Optimiser selection depending on input context. 

First context Optimiser output Second context Optimiser output 

Network 

size 

Average 

mobility (m/s) Routing protocol 

Network 

size 

Average 

mobility (m/s) Routing protocol 

62 18 AODV 62 3 OLSR 

62 18 AODV 8 18 AODV 

62 18 AODV 8 3 DSR 

62 18 AODV 62 11 OLSR 

62 18 AODV 20 18 AODV 

62 18 AODV 20 11 DSR 

8 3 DSR 8 11 AODV 

8 3 DSR 20 3 DSR 

8 3 DSR 20 11 DSR 

8 3 DSR 8 18 AODV 

8 3 DSR 62 3 OLSR 

8 3 DSR 62 18 AODV 

20 11 DSR 20 3 DSR 

20 11 DSR 8 11 AODV 

20 11 DSR 8 3 DSR 

20 11 DSR 20 18 AODV 

20 11 DSR 62 11 OLSR 

20 11 DSR 62 18 AODV 
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Table 7.8 includes the solutions for the Optimisers (GA or PSO as they select the same solution). After 

supplying the Optimiser with the first context, it will choose a solution that is most of the time 

different than its solution for the second context. The table shows the selection of different routing 

protocol depending on the input context. Table 7.8 has two main columns: the first main column for 

the first input context and the Optimiser selected routing protocol, and the second main column for the 

second input context and the Optimiser selected routing protocol. For example, for network with 62 

nodes and 18 m/s average mobility the routing protocol selected was AODV, but when the context 

changes and the network average mobility is reduced to 3 m/s, OLSR is selected as the optimum 

routing protocol. 

 

7.6.5 MANET Optimisers Selection 

The GA Optimiser characteristic will be compared with the PSO Optimiser characteristic, based on 

Clerc and Kennedy statement about PSO [18] which says, “Particle swarm optimisation comprises a 

very simple concept and paradigms; it can be implemented in a few lines of computer code. It requires 

only primitive mathematical operators, and is computationally inexpensive in terms of both memory 

requirements and speed [19].” 

a. GA is more complicated than PSO and includes many algorithms for encoding, ranking, cross 

over, and mutation. PSO is much simpler than GA as PSO computation relies on two basic equations. 

b. GA requires more time in the computation process because of the number of algorithms to be 

processed. As such, few PSO computer codes can make the PSO Optimiser faster than the GA 

Optimiser at finding the solutions. 

Comparing the efficiency of the two techniques quantitatively, the best objective in each of the fifth 

column of Tables 7.6 and 7.7 were studied. After examining the two columns, it shows that, in 

general, the GA best objective was always higher in value than the PSO best objective. For example, 

in Case 9, when network size was 8 nodes with average mobility 3 m/s, the routing protocol selected 

was DSR with GA best objective = 0.9981 and PSO best objective = 0.323977. This clearly shows that 

PSO have the minimum MS. 

These comparison results evaluate each Optimiser; on this basis, a decision made to implement PSO 

techniques as an Optimiser in the I-MAN routing protocols optimisation system. 
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7.7 Summary 

In this chapter, the necessity of utilising the Artificial Intelligence (AI) algorithms for optimizing 

MANET has been highlighted because of the AI’s ability to adapt to changes in the environment and 

its algorithms’ fast convergence. In this chapter, the sequence operations for each GA and PSO 

technique were also explained in detail. Furthermore, two MANET Optimisers were created: one with 

GA and the second with PSO. The results show that both Optimisers selected the same routing 

protocols for the same specified context. 

Subsequently, a validation table was created to include all possible context changes. The results in the 

table clearly show that the Optimiser selects a different routing protocol in different cases. Also, the 

validation table results confirm that the changes in the network context will affect the network 

performance; therefore, for a better network performance, the Optimiser will select a different routing 

protocol if the context changes. Having evaluated the two Optimisers in this chapter, it was concluded 

that the PSO optimisation technique will be the optimisation technique used in the I-MAN routing 

protocols optimisation system. 
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Chapter 8 

System Implementation 
 

8.1 Introduction 

The focus in this chapter will be on implementing the intelligent system design outlined in Chapter 4. 

To create a MANET network with an embedded system, many modifications to the original nodes 

should be made. Therefore, the main contributions in this chapter are as follows: 

1. Embedding the intelligent system in the OpnetTM14 modeller. 

2. Implementing the I-MAN routing protocols optimisation system in a case study. The case study 

scenario includes important changes in the network context; the use of complicated scenario such as 

this is of itself novel to this work, since to our knowledge there has been no simulation scenario which 

presents various context changes through one scenario. 

3. Evaluating the proposed system by comparing networks operating with and without the intelligent 

system, as the performance results are the factors used to evaluate the networks. 

The rest of the chapter is organised in the following manner: in Section 8.2, the structure for the 

network that utilises the intelligent system is determined; in Section 8.3, the implementation process 

for the I-MAN optimisation system in MANET is described in detail, which includes determining the 

role for each I-MAN system’s component and the sequence for their operation; in Section 8.4, the 

modification to MANET's nodes that enables the intelligent system to function will be explained; and 

in Section 8.5, the I-MAN routing protocols optimisation system is tested by the simulation through a 

case study that includes different changes in the simulation environment, with the simulation results of 

the case study reviewed in this section as well. In Section 8.6, the results are compared and analysed 

whereas in Section 8.7 the network cost minimisation function is discussed. In Section 8.8, the 

network’s performance is evaluated quantitatively. In Section 8.9, the effect of the Inter-Arrival Time 

(TIA) on the performance is investigated. Section 8.10 presents the system limitations and finally, 

Section 8.11 illustrates the chapter findings. 
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8.2 I-MAN Optimisation System with MANET 

A decision should be made about two important queries before implementing the intelligent system in 

a wireless MANET environment; these queries are twofold: 

1. The need for the intelligent unit to be in decision node, and  

2. The need for embedding the intelligent unit in all MANET nodes. 

The forthcoming sections will discuss and clarify these two issues and then come to a decision as to 

what the network will be based on in the implementation stage. 

 

8.2.1 Optimisation Unit in Intelligent Node 
Obviously, the Ad hoc network depends on one routing protocol to route the packets from source to 

destination; this means that all Ad hoc nodes should share the same routing protocol at once (except 

the zone protocols). Therefore, deciding the optimum routing protocol is not an individual node’s task 

that could be concluded independently from other nodes, as each node cannot decide its operating 

routing protocol without considering and referring to the other network nodes. 

Therefore, referring the routing protocol decision to one intelligent node is crucial, as it should have a 

good knowledge about the network. Thus, in this research, the responsibility of deciding on the one 

suggested routing protocol is to be undertaken by a single node. After consulting all other network 

nodes, the node will then command the network to operate on a specific protocol. An intelligent 

module would be embedded in the decision node (optimisation unit), to support the node’s decision 

regarding the optimised routing protocol selection. This node will be called the “Intelligent node,” and 

should have the computation capability to process the selected optimisation technique. 

In this research, the optimisation of the Ad hoc routing protocol has been designed to accommodate an 

intelligent unit for the whole network. If another factor is to be considered, such as the data rate, the 

decision issue will not be important as each individual network node can send its packets at a rate that 

the node is comfortable with. In this case, the intelligent unit could be embedded in each network node 

for an individual decision and each node could decide its optimum data rate. 

To imagine this decision assumption in an Ad hoc realistic situation or any emergency situation, the 

Intelligent node represents the intelligent device in the control panel which advises a group of people 

via their devices, as shown in Figure 8.1. For example, a battle field (as in Figure 2.3) where the group 

leader’s laptop represents the Intelligent node. 

As known MANET devices have a limited battery life [1], by centralizing the optimisation process in 

one Intelligent node, other network nodes will be relieved from the data processing. This will also save 
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the MANET nodes’ power and time, as the other network nodes duty will be supporting the decision 

process by forwarding periodic Topology packets to the Intelligent node. 

 

 

 

Figure 8.1: Intelligent node with other MANET nodes. 

 

To develop the intelligent system so that the system can overcome the MANET power consumption 

problem [1], and to give the intelligent system a better chance of practical implementation in reality, 

MANET could be part of the Wireless Mesh Network (WMN) [2]-[3]; MANET could be one of the 

end-connected components of WMN wherein the intelligent system is centralized in the mesh router. 

MANET nodes could be the MWN client, as shown in Figure 8.2, in which MANET network is 

connected to the backbone of the WMN through a mesh router. In this case, one of the WMN routers 

(the red arrows) will have the responsibility of optimising the routing protocol for the whole MANET. 

In this case, more power and time will be saved for MANET as the MWN router will receive 

information and forward its decision from/to the MANET nodes. Figure 2.1 in Chapter 2 can also help 

to adapt this idea by embedding the intelligent unit in the fixed network router that will receive 

information and forwarding the decision from/to the mobile network. 

MANET 

Topology and 
Decision packets 
traffic 

Intelligent node 
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Figure 8.2: The Wireless Mesh Network (WMN) architecture [3]. 

 

8.2.2 Embedding the Intelligent Unit in MANET Nodes 
The Intelligent node may, for reasons such as its battery being exhausted or left the network, cease 

serving the network and processing the intelligent optimisation. Therefore, this leads the network to 

suffer from possible single-point-of-failure if the network centralized the intelligent unit in only one 

Intelligent node. Consequently, the intelligent optimisation unit should be embedded in any mobile Ad 

hoc node that has the computation capability to accomplish the optimisation procedure. This will 

reduce the possibility of single-point-of-failure by having other nodes in the network embed this 

intelligent optimisation unit. As a result, if the Intelligent node fails, another nominated node will 

trigger its intelligent optimisation unit and become the new Intelligent node. 

 

8.3 Implementation 

This chapter implements the green arrows sequence presented in Chapter 4 (see Figure 4.1). The 

components discussed previously (Modeller and Optimiser) were assembled and joined with the 

switching technique (that will be explained in details in this Chapter) to create the I-MAN routing 

protocols optimisation system. 

The system demands network topology information. Therefore, to solve this request problem, 

Intelligent unit 



_____________________________________________________________________136 

 

Topology packets are sent to the I-MAN routing protocols optimisation unit, as shown in Figure 8.1. 

Each Topology packet contains the node’s mobility and the routing protocol in use. 

The optimisation block diagram shown in Figure 8.3 illustrates the optimisation unit embedded in the 

Intelligent node, and represents the operations of the I-MAN optimisation unit in sequence. The unit 

consists of the Communication Gate, Information Stack, Optimiser, Modeller, and Decision Maker. As 

given below. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.3: I-MAN optimisation unit blocks diagram. 

 

First, the Intelligent node’s Communication Gate will forward the Topology packets received from the 

network nodes to the Information Stack. Next, the Information Stack will deduce the current network 

context (the requested information parameters are: network size and average mobility). Afterward, the 

Information Stack will update the Optimiser with the new context (the roles of the Information Stack 

are explained in more detail further on; see the flowchart shown in Figure 8.4). The Optimiser then 

generates its solution for the current context with the support of the Modeller to predict the network 

performance metrics for each solution. The protocol’s performance metrics help the Optimiser to not 

only evaluate the routing protocol in operation, but also determine the optimum routing protocol, as 

the optimum protocol for the network will be selected based on its performance. The selected routing 

protocol should have the best cost, which results from a combination of the desired parameters for less 

data drop, less delay, lower loads, less RA, and higher throughput. The decision will then be fed to the 

Decision Maker. The latter will conclude the switch time and reference it with the new optimum 

Intelligent node 

Optimisation unit 

Information Stack Optimiser Decision Maker 

Modeller 

Communication 
Gate 

MANET nodes 
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routing protocol in the Decision packet. Next, the Decision Maker will send the Decision packet to the 

Communication Gate. Finally, the Communication Gate will start feedback of the Decision packets to 

the network nodes. 

Figure 8.4 shows a flowchart of the I-MAN routing protocols optimisation system which focuses on 

the system implementation through the time scale. First, the system parameter should be initialised; 

here, OPT is the parameter that represents the optimisation unit condition. If OPT = 0 that means this 

is the first run for the unit, and also means that the unit did not receive Topology packets before (the 

current context information) from the network. Whereas if OPT > 0, this means that the Optimiser was 

previously activated and chose the optimum routing protocol after receiving previous Topology 

packets. 

After the network nodes send the Topology packets to the Intelligent node, the Information Stack will 

start its procedure, as shown by the flowchart sequence in Figure 8.4 and outlined below: 

The first role is to count and gather each packet received from the Communication Gate to conclude 

the total network size, utilising the nodes counter. 

The second role is to extract the node’s mobility and the protocol name in operation from the node’s 

Topology packet; then the node’s mobility will be added with the others nodes mobility. 

The third role is to buffer all the network topology information until time T1, 

as T1 = current simulation time + Threshold_1,       (8.1) 

where Threshold_1 is the sent delay allowances, or the estimated time for all the network nodes’ 

Topology packets to be received by the Intelligent node. 

The fourth role is to calculate, at time T1, the Optimiser requested parameters; network size (nodes 

counter); and Average Mobility. The total of nodes counted will be the network size, whereas the 

average nodes mobility will be calculated by adding up all the nodes’ mobility and then dividing the 

result by the network size previously calculated. 

The fifth role is to compare the Information Stack context results: the network size and the average 

mobility. If OPT = 0, then these results will be forwarded to the Optimiser directly but if OPT > 0, 

then the results should be compared to or matched with the network context from the previous period 

(that should be stored in the Information Stack). If the matching procedure result is negative, this 

means that the contexts are different and there will be new inputs to the PSO Optimiser. However, if 

the matching procedure result is positive and the context values are the same, then that means the 

network context did not change. In such case there is no need to activate the Optimiser as the same 

previous decision will be reached. Also, there will be no need to send Decision packets from the 

Intelligent node to the network nodes. 
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Figure 8.4: I-MAN routing protocols optimisation system implementation flowchart. 
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Figure 8.4 presents the Modeller role in predicting the network performance for each protocol and then 

sending it to the Optimiser to determine the optimum protocol. The flowchart also illustrates the 

Decision Maker’s role after the Optimiser concludes its decision (that is, sends the Decision packets). 

The packets contain the new optimum routing protocol name plus switching simulation time (T2) to 

the Communication Gate, 

as T2 = current simulation time + Threshold_2,       (8.2) 

where Threshold_2 is the delivery delay allowances or the estimated time for the Decision packets 

sent from the Intelligent node to reach all the network nodes. 

The Decision Maker will decide the exact simulation time T2; as in, the time that the network nodes 

should adopted the new optimum protocol mechanism. The Communication Gate will then broadcast 

the packets to all the network nodes. If the optimum routing protocol is similar to the current routing 

protocol in operation, then the Decision Maker will not send Decision packets to the Communication 

Gate. 

 

8.4 MANET Nodes Modification 

To evaluate the intelligent system, the I-MAN routing protocols optimisation system was implemented 

with the support of the OpnetTM14 modeller that uses C++ programming language. 

Two major modifications should be implemented to the wireless network nodes models in the 

OpnetTM14 modeller: the first is for the node that will embed the intelligent unit (that is, Intelligent 

node); the second is for the other network nodes that will embed the switching technique. The 

following sections will illustrate the modification. Mainly, the modification (the optimisation unit or 

the switching technique) was in the MANET node's IP process model. Figure 8.5 shows the original 

IP process model for MANET nodes in the OpnetTM14 modeller. 
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Figure 8.5: The original IP process model for MANET node in OpnetTM14 modeller. 

 

8.4.1 Creating the Intelligent Node 
In Section 8.2 a conclusion was drawn that, in order to create the intelligent optimisation system, at 

least one of the OpnetTM14 modeller MANET nodes should embed the intelligent optimisation unit in 

their process model. Therefore, the entire intelligent optimisation block diagram in Figure 8.3 should 

be included and embedded in the Intelligent node. As illustrated in Figure 8.6, the Information Stack 

component is divided between the init and idle processors (the thin black arrows). Therein, the green 

process model with the title NF-PSO contains two major components: the Optimiser and the Modeller 

(the double black arrow). Finally, the Decision Maker component is based in the idle processor (the 

thicker black arrow). 
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Figure 8.6: The IP process model for Intelligent MANET node in OpnetTM14 modeller. 

 

8.4.1.1 Embedding the Information Stack 
The init process creates and initializes two counters: the Nodes and the Mobility counters. When a 

Topology packet is received from the MANET nodes, the init process will send an interruption 

command to the idle process. The Nodes counter will increase by one with every received packet. The 

packets collection process will continue until T1. At time T1, the value of the Nodes counter represents 

the total number of the network nodes in the MANET.  

The Topology packet also contains the node’s mobility. For every Topology packet that arrives, the 

node’s mobility will be extracted and added to the Mobility counter; then the packet will be destroyed. 

The Mobility counter will keep summing the nodes’ mobility until time T1, when the average mobility 

is calculated by dividing the Mobility counter value by the Node counter. 

8.4.1.2 Embedding the NF Modeller 
After time T1, and after calculating the MANET context parameters, the idle process will send an 

interruption command to operate NF-PSO process. Then the network performance will be predicted 

using the network performance models. 

Information Stack 

Decision Maker Optimiser and Modeller 
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In the NF-PSO process model, the neuro-fuzzy (NF) Modeller created is based on the Sugeno 

modelling approach. Some of the details that are needed to program the Modeller, such as the type of 

the input membership functions, the number of rules for each performance model, and the constant 

parameters, are borrowed from the NF MANET performance models created in Chapter 6, wherein 15 

models were developed. 

Support from the Modeller ensures adoption of the optimum protocol by the Optimiser. Thus, to select 

the best protocol, the I-MAN Modeller generated the performance models (data drop, delay, load, 

retransmission attempt, and throughput) for MANET routing protocols depending on the network 

context  

8.4.1.3 Embedding the PSO Optimiser 
For each iteration loop, the Modeller will send the performance parameters values to the Optimiser 

that will start the optimisation process. To create the PSO Optimiser, the optimisation technique is 

embedded in an NF-PSO process model based on the practical swarm optimisation velocity Equation 

(7.1) and position Equation (7.2) [4]. 

PSO, the process that inspired from nature, was set with three dimensions swarm to represent the two 

inputs: network size and average mobility, and the one output the routing protocol. The size for the 

swarm was 10, iterated ten times, with an accepted error of less than 1×10-10. The PSO Optimiser 

objective function is based on the cost function in Equation (7.4). In this case study, the value for w 

was 0.7298; the values for φ1 and φ2 were 1.49618, whereas r1 and r2 were calculated randomly. The 

best objective, the performance parameters least Mean Square (MS), will determine the optimum 

protocol, where the selected protocol has a combination of the parameters for the least normalized data 

drop, the least normalized load, the least normalized delay, the least normalized RA, and the highest 

normalized throughput. The Optimiser results will then be forwarded to the Decision Maker. 

8.4.1.4 Embedding the Decision Maker 
First, the Decision Maker compares the Optimiser results with the current routing protocol in 

operation. If the comparison results are the same, then there will be no action from the Decision 

Maker. However, if the comparison results are different, the Decision Maker will start to calculate T2 

and then create the Decision packet. The Decision Maker broadcasts these packets to all MANET 

nodes. The packet contains the routing protocol’s name and switching time (T2), or time at which all 

nodes should trigger the switching technique and adopt the suggested new protocol. 

 

8.4.2 Creating the MANET Nodes 
The original MANET node model should be modified to be able to perform the extra roles, as listed 

below: 
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a. Send periodic Topology packet: each node in MANET creates a Topology packet containing its 

nodes’ mobility and the protocol in use; the node then sends this packet to the Intelligent node at a 

predefined time. 

b. Receive the Decision packet: when a MANET node receives the Decision packet, it will extract 

the new routing protocol and the switching time from the packet (then the packet will be destroyed). 

c. Adapt the switching protocol technique: the node will compare the switching time with the 

current simulation time. When the switching time is equivalent to the current simulation time, the node 

will use its switching technique to switch to the new routing protocol. As shown by the blue arrow in 

Figure 8.7, the (SW_Protocol) arrow leads the node to initialise the process of adapting the new 

routing protocol. 

d. Buffering the data packets: packets are buffered until the new routing protocol is established. 

 

 

 

Figure 8.7: The IP process model for MANET node that adopts the switching technique in OpnetTM14 

modeller. 

Switching technique 
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8.5 Case Study 

To evaluate the proposed I-MAN routing protocols optimisation system, it should be implemented in a 

realistic scenario where the network context is changing. Also, the network operating the system 

should be compared to other networks’ operating routing protocols in the same scenario conditions, 

without the system. Therefore, this case study presents one scenario example that addresses different 

contexts. 

 

8.5.1 Simulation Environment 
Four identical MANET simulation scenarios were executed. The same network scenario was 

implemented four times: first with the OLSR routing protocol, second with the DSR routing protocol, 

third with the AODV routing protocol and fourth with I-MAN. Each scenario ran for 4800 s. Nodes 

moving randomly distributed raw packets at 1 Mbps data rate to random destinations. Packets were 

generated with Poisson Inter-Arrival time. All scenarios were implemented with five context cases 

which lasted for nearly 16 minutes. Table 8.1 explains the context’s duration, network size, and 

average mobility. 

 

Table 8.1: The scenario’s list of context. 

Context Case Time (minute) Network size Average mobility (m/s) 

First 0 ~ 16 16 4 
Second 16 ~ 32 55 4 
Third 32 ~ 48 55 9 
Fourth 48 ~ 64 21 9 
Fifth 64 ~ 80 21 17 

 

An image shown in Figure 8.8 for MANET ran context 1 for the fourth simulation, the I-MAN 

protocol scenario. The image illustrates the both working and the failed nodes, and also presents the 

position of each node at time 0. 
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Figure 8.8: MANET image representing part of I-MAN scenarios: context 1. 

 

Also, another image in Figure 8.9 for MANET ran Context 2 and Context 3 for the same scenario to 

represent the working and the failed nodes. As mentioned before, the nodes are moving arbitrarily so 

their position is always changing; therefore, this image does not present the nodes’ positions in 

Context 2 and Context 3. 
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Figure 8.9: MANET image representing part of I-MAN scenario: Context 2 and Context 3. 

 

The last MANET image in Figure 8.10 represents part of the I-MAN scenario with Context 4 and 

Context 5. This image presents the working nodes (network size) in this scenario, but not their 

positions in Context 4 and Context 5 (network mobility). 
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Figure 8.10: MANET image representing part of I-MAN scenarios: Context 4 and Context 5. 

 

The simulation for the first three OLSR, DSR, and AODV routing protocols were ran with the same 

MANET properties used for the I-MAN scenarios: the same node position, the same failed nodes, and 

the same node trajectory, through the entire context. These will have the same I-MAN scenario images 

without the Intelligent node’s responsibility. The image in Figure 8.11 is an example of MANET 

operating with one of the three protocols; this image represents part of the simulation for Context 2 

and Context 3, as it presents the working nodes (network size) in this scenario, but not their real 

positions through the simulation. 

Figure 8.12 clarifies the average mobility (bold font) for each context through the network simulation 

scenarios. 
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Figure 8.11: MANET image representing part of (OLSR or DSR or AODV) scenarios: context 2 and 

context 3. 

 

8.5.2 Experiment Configuration 
As mentioned before, the proposed approach is a scheme for routing adaptation. The I-MAN system’s 

aim is to select a routing protocol for a specific MANET’s context. Therefore, this proposal is actually 

a routing protocols optimisation system, but is not a new routing approach. As such, a few points 

should be considered before discussing the simulation results: 

First, throughout the duration of the simulated scenario (I-MAN), the optimisation system might adopt 

more than one routing protocol. Therefore, for the sake of clarity, the protocol adopted by the I-MAN 

system will be called the I-MAN protocol but it is in fact one of the three routing protocols OLSR, 

DSR, or AODV. The term “I-MAN protocol” will also erase the confusion in the results analysis and 

evaluation sections. 
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Figure 8.12: I-MAN routing protocol adaptations through the simulation period. 

 

Second, in scenario four (I-MAN), the I-MAN protocol could be a combination of the protocols 

OLSR, DSR and/or AODV. Therefore, the I-MAN protocol will have the same characteristics of the 

adopted protocol. For example, if the I-MAN protocol adopts AODV routing protocol, it will have the 

same strengths and weaknesses of the AODV routing protocol mentioned previously in Chapter 4. 

Third, in this case study, the first three MANET scenarios (OLSR, DSR, and AODV) were presented 

as a flat network, whereas in the fourth scenario for I-MAN, the MANET network was presented as a 

cluster network led by the Intelligent node. 

Fourth, in the first three scenarios (OLSR, DSR, and AODV), MANET nodes have to send one type 

of packet: data packets; whereas in the I-MAN simulation scenario, the network nodes send two types 

of packets: data packets and Topology packets. 

The types of packets needed for the simulations were defined as follows: 

1. Data packets: These packets represent the data sent between the users. The packets’ Inter-Arrival 

Time (TIA) was 100 s, which means the data packets will be sent to random destination addresses 

every 100 s. 

2. Topology packets: employed solely in the I-MAN scenario, each node had to send five Topology 

packets through the simulation time to the Intelligent node. The first Topology packet was sent at time 

320 s, whereas the other four Topology packets will be sent from time 960 s until the end of the 

simulation, with 960 s Inter-Arrival Time. 

Fifth, in the I-MAN scenario, there should be a sufficient time (Threshold_1) for the Topology 

packets to reach the Intelligent node and a sufficient time (Threshold_2) for the Decision packets to 

reach the MANET nodes. Therefore, deciding the amplitude for Threshold_1 and Threshold_2 effects 

the simulation dramatically. Thus, the value of Threshold_1 was chosen to be 0.5 s and the value for 

Threshold_2 was chosen to be 0.5 s. 

Simulation Time 0 min.         16 min.              32 min.              48 min.      1hr 4min        1hr 20min 
 
Network size              16 nodes            55 nodes          55 nodes          21 nodes          21 nodes 
 
Time Period               16 min.             16 min.             16 min.            16 min.           16 min. 
 
Average Mobility                      4 m/s                                          9 m/s                              17 m/s 
 
I-MAN adaptations AODV   DSR        OLSR              OLSR               DSR                   AODV 
                                (Default) 



_____________________________________________________________________150 

 

Six, in the I-MAN scenario, the optimiser unit processes the normalization Equation (7.3) and the cost 

function in Equation (7.4) to determine the best protocol. 

 

8.5.3 Simulation Results 
Figure 8.12 illustrates the I-MAN system protocol adaptation through the simulation period against the 

network size and the average mobility. The figure shows the I-MAN system’s reaction to each context 

change by adopting the ideal routing protocol (choosing the optimum routing mechanism) for that 

situation. The I-MAN protocol implements the switching procedure at T2 to switch to different routing 

protocol from one period of time to another. The I-MAN scenario started with the default routing 

protocol AODV, then implemented the I-MAN system and adapting sequence of the protocols shown 

in the figure; the network first switched to the DSR routing protocol, followed by another switch to 

OLSR, then a switch back to DSR, and finally, a switch to AODV. 

Through the I-MAN simulation scenario, The Optimiser has selected more than one routing protocol. 

Table 8.2 shows more details about the I-MAN protocol switching process during the scenario. The 

table includes the context case no., the previous routing protocol activated by the network nodes, the 

period for each context, the current setting, and the suggested optimum routing protocol (that is, the I-

MAN protocol that should be in operation during the time period mentioned in the table). At the 

beginning of the simulation, the I-MAN protocol starts with the default routing protocol AODV 

(before triggering the optimisation unit) up to time 320 s. At that time, the nodes will start to send their 

current context Topology packets, represented by Context 1 (shown also in Figure 8.8). The I-MAN 

Optimiser will select the DSR routing protocol to be the I-MAN protocol for the period (320 s - 960 s). 

Therefore, all network nodes after time 320 s (320 + T2) up to 960 s should adopt DSR routing 

protocol. 

 

Table 8.2: I-MAN Optimal Selection for the Case Study Scenario. 

Current settings Optimal 
settings 

Context 
Cases 

Previous 
routing 
protocol 

Time 
(sec) No. of 

nodes 
Mobility 

(m/s) 

I-MAN 
protocol 
acts as 

default ---- 0-320 16 4 AODV 
1 AODV 320-960 16 4 DSR 
2 DSR 960-1920 55 4 OLSR 
3 OLSR 1920-2880 55 9 OLSR 
4 OLSR 2880-3840 21 9 DSR 
5 DSR 3840-4800 21 17 AODV 
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However, as shown in Figure 8.9, when the network size is increased to 55 nodes as in Context 2, 

OLSR is consequently chosen as the I-MAN protocol to route the packets and prevent the network 

performance from deterioration. In Context 3, when the nodes’ speeds have increased to 9 m/s, the 

Optimiser selects OLSR as well. In this situation, since OLSR matches the previous protocol used 

during the previous simulation period, the Intelligent node’s action was not to send Decision packets 

to the network nodes. 

In Context 4, due to the dynamic nature of MANET, many nodes left the network; the network size 

thereby decreased to 21 nodes, as shown in Figure 8.10. As such, the I-MAN Optimiser selects DSR to 

operate the network instead of OLSR. However, when the mobility increased to 17 m/s in Context 5, 

AODV was the protocol selected to serve the network. 

 

8.6 Comparison and Results Analysis 

Visual comparisons between the four routing schemes (AODV, DSR, OLSR, and I-MAN) are 

presented in Figures 8.13 through 8.17. The comparisons were presented in terms of data drop, delay, 

load, RA, and throughput, respectively. 

 

8.6.1 Data Drop 
Figure 8.13 shows a comparison of the data drop variation for the four protocols throughout the 

simulation time. It can be seen that the I-MAN routing protocol has the lowest data drop followed by 

OLSR, then AODV, while the DSR has the largest data drop. 

OLSR, a Table-Driven routing protocol that generates routing tables for the entirety of network 

destinations, was able to deliver most of the data without dropping it. Therefore, the OLSR data drop 

curve was better than the DSR and AODV data drop curves. The simulation data of OLSR (in 

Contexts 2 and 3) shows that OLSR was able to handle the scalable network efficiently. 

On the other hand, the network scalability causes a noticeable data drop for the On Demand routing 

protocols DSR and AODV as a result of establishing routes in a large network. 

As compared to the data dropped by DSR and AODV in Context 1, larger amounts of data were 

dropped by both in Contexts 2 and 3 (see Figure 8.13). Up to Context 3, DSR and AODV protocols 

had approximately the same attitude; in Context 4, however, the AODV routing protocol outperformed 

DSR as the AODV data drop was significantly less since the AODV protocol mechanism is adaptable 

to highly dynamic networks (see the comparison section in Chapter 4). Finally, in Context 5 the data 

drop for the two On Demand protocols was found to be acceptable. In general, AODV performance 

was better than DSR as the AODV’s data drop was comparatively less than the DSR’s. 
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Figure 8.13: OLSR, DSR, AODV, and I-MAN data drop. 

 

As is clearly shown in Figure 8.13, the best data delivery for the entire context is achieved by the I-

MAN protocol, as it has the best data delivery rate. From time (0 ~ 320 s), the I-MAN optimisation 

unit was not yet active, therefore resulting in the drop of data. After activating the optimisation unit 

(from time 320 s up to the end of the simulation), this data drop was reduced significantly. The I-MAN 

system allows each network node a packets buffer to store the packets that could not reach their 

destinations. After establishing a new route, the packets will be sent again and, consequently, the data 

drop will be notably reduced. 

 

8.6.2 Delay 
Figure 8.14 shows the delay curves of the four protocols AODV, DSR, OLSR, and I-MAN throughout 

the simulation.  

Comparing the three protocols’ OLSR, DSR, and AODV delay curves in all the five contexts shows 

that the OLSR has the lowest delay curve, followed by AODV, and DSR, which had the highest curve. 

The proactive routing protocol OLSR exhibited an excellent delay performance throughout the 

simulation’s duration due to the periodic message and MPR mechanism that keeps the nodes’ routing 

table updated and helps in delivering the packets without remarkable delay even when the number of 

nodes increases. 
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Figure 8.14: OLSR, DSR, AODV, and I-MAN delay. 

 

Higher delay rates were obtained for the On Demand routing protocols AODV and DSR since 

whenever a source needs to send packets to a destination, the On Demand routing protocols apply the 

Route discovery mechanism if the destination address is not available in the source routing table. 

Furthermore, network scalability has an effect on the DSR delay rate, as shown in Figure 8.14, 

throughout the simulation time and up to 2880 s. Given the changes in the Contexts 1, 2, and 3, the 

DSR delay rate increased as a result of increasing the network size. The delay rate increased because 

of the implementation of the DSR's routing cache mechanism (for more detail, refer to the DSR 

weaknesses described in the comparisons made by Section 4.4.5.2). 

Figure 8.14 also indicates that the I-MAN protocol behaviour varied throughout the simulation time. 

From time 0 s up to time 320 s, the delay rate was high because the network was adopting the default 

routing protocol (AODV); as such, the intelligent unit was not activated during this period of time. 

After time 320 s, the I-MAN optimisation unit became operative and selected the DSR mechanism as 

the optimum routing protocol. Consequently, after applying the I-MAN switching mechanism and 

adopting the DSR protocol, the network delay rate was clearly reduced. From 960 s up to 2880 s as 

represented in Contexts 2 and 3, the I-MAN protocol adopted an OLSR mechanism, yielding an 

approximately constant delay rate. In contrast, the I-MAN protocol in Contexts 4 and 5 produced 

slightly higher delay rates with acceptable levels. 

In Figure 8.14, there was a rapid increment in the delay rate occurring at time 320 s, 960 s, and 3840 s 

due to the Decision packets that are sent by the Intelligent node to the network nodes. 
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8.6.3 Load 
Figure 8.15 shows the network load graphs operating the four protocols AODV, DSR, OLSR, and I-

MAN through the simulation time. 

 

Figure 8.15: OLSR, DSR, AODV, and I-MAN load. 

 

In comparing the load graphs for the three protocols OLSR, DSR, and AODV throughout all network 

context changes, it appears that the DSR routing protocol has the highest load, the AODV the second 

highest, whereas the least load was for OLSR routing protocol. 

The updating of OLSR routing tables assists the protocol in obtaining the least load, whereas the 

AODV sequence number technique aids in the protocol load reduction. On the other hand, DSR load 

was the highest through the whole simulation, especially in Contexts 2 and 3, as the network 

scalability dramatically affected DSR operation and created load over the entire network. In Contexts 

4 and 5, however, the load was reduced drastically as a result of the network size reduction. In these 

Contexts (4 and 5), the DSR multi-routing path strategy pays off, so that if the route established earlier 

is broken, then the source will search its route cache for another ready-route to that destination. If a 

ready-route is found, the source does not have to establish a new Route discovery and will send the 

packets through the second backup route. Therefore, the source will save both time and power. 

In Figure 8.15, the I-MAN graph shows the changes in the load, as I-MAN load decreases and 

increases following the I-MAN adopted protocol. The graph clearly shows the I-MAN mechanism 

switching to different protocol at times 320 s, 960 s, 2880 s, and 3840 s. After 320 s, in Context 1 the 

load level was acceptable when the I-MAN Optimiser was activated. During the period from 960 s to 
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2880 s, as represented by Contexts 2 and 3, the I-MAN protocol switched to the OLSR mechanism 

and the I-MAN load graph was approximately stable. In Context 4, the I-MAN protocol reduced load 

by using the DSR mechanism whereby each node has their route cached; however, with Context 5, the 

load increased reasonably because in this instance the AODV mechanism was adopted. 

 

8.6.4 Retransmission Attempts (RA) 
Retransmission Attempts (RA) is a traditional mechanism for detecting the congestion in the network; 

therefore, RA is similar to packet loss. Figure 8.16 shows RA graphs for the four protocols AODV, 

DSR, OLSR, and I-MAN through the simulation time.  

The figure shows that I-MAN accomplished the best results as it has the least packets retransmission 

attempts. The second best results were obtained by the OLSR protocol. The DSR protocol had more 

packets to retransmit, whereas the AODV protocol appeared to have too many packets to retransmit. 

 

Figure 8.16: OLSR, DSR, AODV, and I-MAN Retransmission Attempts (RA). 

 

The OLSR routing update table reduces the packets’ RA as most of the packets reached their 

destination. Also, the DSR route cache assists in transmitting the packets through the storied backup-

ready routes if the route used is broken; whereas AODV has no backup plan to reduce its RA. 

However, in Context 5, AODV was better than both OLSR and DSR as the number of AODV’s RA 

packets was reduced significantly. This reduction is related to the AODV dynamic strategy that adapts 

to mobility. Also, the effect of high mobility on the DSR routing protocol, that is more RA packets are 

required, is clearly shown in the same period. As such, DSR was the protocol most affected in Context 
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5. 

As shown in Figure 8.16, before operating the I-MAN unit, the default protocol AODV caused many 

packets RA up to time 320 s. After time 320 s, when the optimisation unit was activated, the packets 

RA was reduced significantly in contexts 1, 2, 3, and 4. This deterioration is related to the packets’ 

buffer, secured in each node in I-MAN scenario, to hold the un-transmitted packets. However, in 

Context 5, the network’s high mobility caused the dropping in data packets that need to re-transmit 

again, as shown in Figure 8.16. 

 

8.6.5 Throughput 
Figure 8.17 shows the throughput graphs for the four protocols AODV, DSR, OLSR, and I-MAN 

throughout the simulation time. 

Figure 8.17: OLSR, DSR, AODV, and I-MAN throughput. 

 

Comparing the three traditional protocols’ OLSR, DSR, and AODV throughput, it appears that AODV 

yielded abundant throughput during the simulation, with OLSR second, and DSR yielding relatively 

low throughput. 

The AODV protocol was thus able to forward more packets than the other two protocols; this 

characteristic confirms the protocol’s adaptability to the network dynamic changes. 

Part of the OLSR routing protocol throughput is the OLSR periodic update messages that increase the 

OLSR throughput. 
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Finally, DSR had fewer throughputs since it is not adaptable to the network dynamic changes and it 

does not use the periodic message technique. 

As shown in the figure, I-MAN throughput results vary depending on the mechanism adopted through 

the simulation period. 

As shown in Figure 8.17, there is an increase in I-MAN throughput at time 320 s, 960 s, 2880 s, and 

3840 s due to the Decision packets forwarded by the network nodes. The reduction in the number of 

Decision packets between context 4 and context 5 kept the throughput graph flowing without a 

recognizable increase at that time, as the Intelligent nodes have to forward 21 Decision packets. 

 

8.7 The Network Performance Cost Minimisation Function  

The previous output performance figures—Figure 8.13 for data drop; Figure 8.14 for delay; Figure 

8.15 for load; Figure 8.16 for Retransmission Attempts (RA); and Figure 8.17 for throughput—failed 

to clearly show the best routing protocol through the five context changes. For example, OLSR has the 

best results in terms of delay and load, whereas AODV has the best throughput. Therefore, a cost 

equation, as shown in Equation (8.3), has been suggested to evaluate the performance of the four 

protocols for the simulation’s duration. 

Cost Minimisation = data drop + delay + load + RA + (1-throughput)    (8.3) 

To deliver and create the performance cost minimisation graph for each routing protocol, two steps are 

needed: first, normalizing the five output parameters: delay, load, throughput, data drop, and RA; 

depending on Equation (7.3) and second, applying them to Equation (8.3). 

Figure 8.18 represents the cost minimisation graphs for the four routing protocols AODV, DSR, 

OLSR, and I-MAN. The protocol with the best performance cost minimisation graph is the one with 

the least cost minimisation function result. 

In Context 1, the OLSR graph had a bad start with a cost minimisation of over 4, but started 

decreasing to fewer than 2.5 as the scenario progressed. In Contexts 2 and 3, the cost minimisation 

oscillated under the same level (2.5), whereas in Contexts 4 and 5, the cost minimisation was reduced 

to less than 1. 

The DSR graph also had a sharp increase before 320 s, with cost minimisation value above 4.Then, 

after 320 s, the cost minimisation oscillated under 1 through Contexts 1, 2, 3, and 4; in context 5, 

however, the cost minimisation increases to above 1. 
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Figure 8.18: OLSR, DSR, AODV, and I-MAN cost minimisation function. 

 

Clearly shown in Figure 8.18, the I-MAN protocol reported the least cost minimisation after time 320 

s. Whereas from time 0 s up to 320 s, the I-MAN performance graph oscillated with high cost 

minimisation value (above 3) before operating I-MAN optimisation unit. 

At time 960 s, the I-MAN performance graph suffers from high amplitude of cost minimisation due to 

the large number of Decision packets sent; however, the graph recovered after that time. Proceeding 

time 3840 s, the I-MAN graph rose above 0.5 twice because of the network’s high mobility. 

The saying “no pain, no gain” describes the intelligent system operating in MANET. Although, the 

Decision packets are essential to enhance the network performance for longer time but these packets 

also present an overload that affected the network for seconds. 

In conclusion, from the time the I-MAN routing protocols optimisation system was first activated, the 

best visual cost minimisation graph was the I-MAN graph which also confirmed that the I-MAN 

protocol maintained the network performance as good as expected without incurring any degradation. 
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8.8 The Performance Cost Minimisation Function Quantitative 

Evaluation 

This section evaluates the four protocols quantitatively based on the Integration formula below [5]: 

Area under the curve dxxf
b

a
 )(         (8.4) 

where ƒ is the function of a real variable (x) for an interval [a, b] of real time. In this thesis, one of the 

most commonly used definitions of integration, the Riemann integrals mathematical method [6], has 

been considered to calculate the area under the curve (AUC). 

Riemann’s formula is presented below: 

AUC i

n

i
tf i
 

1
)(           (8.5) 

The area under the curve was first divided into rectangular area samples, with each sample represented 

by its length ( i ) × its height ( )( itf ). The area under each curve is then derived by summing all the 

samples areas. 

In this case study, the performance cost minimisation for each protocol is equivalent to the area under 

the cost minimisation curve in Figure 8.18 for each protocol. The accumulated cost minimisation 

measurements for the four protocols were calculated and the results shown in Figure 8.19. The chart 

that has the minimum cost represents the best protocol. The figure shows clearly that the accumulated 

cost minimisation chart measurements for I-MAN are 37, which is less than the other three protocols’ 

charts. The AODV cost minimisation chart came in second with 244 accumulated measurements, the 

OLSR cost minimisation chart came in third with 264 accumulated measurements, and the DSR cost 

minimisation chart was last with 339 accumulated measurements. 

I-MAN cost minimisation chart results have confirmed quantitatively that the I-MAN protocol is the 

best protocol available. 
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Figure 8.19: OLSR, DSR, AODV, and I-MAN accumulated cost minimisation measurements. 

Figure 8.20 illustrates the cost minimisation in percentage chart for the four protocols. It shows that 

the best (minimum) cost was for I-MAN with 4.4%, whereas AODV came in second with 27.5%, 

OLSR came in third with 29.8%, and DSR was with 38.3 %. 
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Figure 8.20: OLSR, DSR, AODV, and I-MAN cost minimisation percentage chart. 

 

8.9 Studying the Inter-Arrival Time of Topology Packets 

Since the I-MAN system depends on the Topology packets to receive the network context, the periodic 

Inter-Arrival Time (TIA) for the Topology packets is therefore a critical element in implementing the I-

MAN optimisation system. 

If TIA increases, there will be less Topology packets sent to update the Intelligent node with the new 

network context; thus, there will be less triggering and processing for the optimisation unit after T1, 

and hence, there will be less Decision packets sent to the network nodes. This means there will be less 
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load; however, increasing TIA might affect the network performance, as the network context could 

change and the Topology packets be sent after a period of time to represent an old information. 

In contrast, if TIA decreases, there will be more Topology packets sent to the Intelligent node and, 

therefore, more processing work for the optimisation unit after T1. Consequently, there will be more 

Decision packets, which means a higher load for the network. Moreover, in this case the Topology 

packets might contain the same network context that has yet to change. However, the I-MAN 

optimisation unit overcomes part of this problem by replying and sending Decision packets only when 

the contexts determined are not similar to the previously stored ones, as there will be no duplication of 

the Decision packets. 

Therefore, to discover and study the effects of changing the period of the Inter-Arrival time TIA for the 

MANET nodes’ Topology packets, the I-MAN scenario in the previous case study was duplicated 

twice, resulting in three simulation scenarios that should run each time with different TIA.: for the first 

scenario, TIA set to 960 s (the original scenario); whereas for the second scenario. TIA was decreased to 

480 s which is half the value of the first scenario TIA; and, in the third and last scenario, the Inter-

Arrival TIA was increased to 1920 s which is double the value of the first scenario TIA. 

The same procedure implemented in the original (first) scenario was also applied to the second and 

third scenarios, as each scenario’s five output performance parameters were collected. The parameters 

are then normalized and entered into the same cost minimisation Equation (8.3) used by the original 

scenario. The cost minimisation results for the three scenarios are shown in Figure 8.21. 

In Figure 8.21, I-MAN with TIA = 480 s had high extra cost minimisation amplitude (approximately 5) 

at time 480 s; at time 4080 s, there is also another noticeable raise in the cost minimisation amplitude 

with a value of about 1. 

The performance of I-MAN cost minimisation with TIA = 960 s shows a similar attitude to the 

performance of I-MAN cost minimisation with TIA = 480 s, with an extra increase in the cost 

minimisation between time 960 s and 1920 s. 

The performance of I-MAN cost minimisation with TIA = 1920 s shows an extra increase in the cost 

minimisation than the other two cost minimisation specially from time 480 s up to 1920 s, followed by 

an extra increase in the cost minimisation at time 3360 s to reach 0.5. 



_____________________________________________________________________162 

 

0

1

2

3

4

5

0 480 960 1440 1920 2400 2880 3360 3840 4320 4800

Time(s)

co
st

I-MAN Inter-Arrival time = 960

I-MAN Inter-Arrival time = 480

I-MAN Inter-Arrival time = 1920

320 

 Default    Context 1             Context 2                         Context 3                      Context 4                 Context 5 

 
Figure 8.21: I-MAN optimisation system with three different Inter-Arrival time. 

 

To evaluate the three costs in Figure 8.21 quantitatively, Equation (8.5) was used to conclude the total 

cost minimisation. Each cost minimisation result is presented in Figure 8.22. The figure shows that the 

minimum overall performance chart is I-MAN with TIA = 480 s, whereas the overall performance chart 

for I-MAN with TIA = 960 s came second, and the I-MAN chart with TIA = 1920 s placed third, with 

the biggest accumulated cost minimisation measurements. 

From these results, a conclusion was drawn that if the TIA is decreased, it will enhance the network 

performance because it will keep the intelligent unit updated with the network context; in contrast, if 

the TIA is increased it will feed the intelligent unit with old information which will lead to degradation 

in the performance. 
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Figure 8.22: I-MAN optimisation system cost minimisation areas for three different Inter-Arrival time. 
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Also, another conclusion was drawn through studying the three scenarios; that is, TIA should not be a 

constant time interval, as it should follow the network’s needs. Thus, TIA should increase and decrease 

according to the network context. For example, if the network average mobility increases, the TIA 

should decrease and visa versa. 

 

8.10  Case Study Limitations 

The I-MAN optimisation system creates a self-organised system, as related by Dressler’s [7] definition 

that state self-organization is a process in which structure and functionality (pattern) at the global 

level of a system emerge solely from numerous interactions among the lower-level components of a 

system without any external or centralized control. The systems components interact in a local context 

either by means of direct communication or environmental observations without reference to the 

global pattern (p.3020). The I-MAN optimisation system maintains a global state, derives operational 

behaviour from that state, and then distributes the globally valid state information among a number of 

nodes. Although, there are some limitations in the design of the I-MAN routing protocols optimisation 

system. Below is a list with the assumptions and synchronizations that should be made to ensure that 

the system will run successfully; the first point relates to the dynamic characteristic of MANET, 

whereas the other points relate to the I-MAN optimisation system design and implementation. 

1. Combinatorial stability: In MANET, the topology always changes for many reasons, such as the 

nodes moving away from one network to join another or the nodes declining further participation in 

the transferring of packets. Also, any node could stop its participation to save its battery (lifetime), or 

because it’s already failed and has an exhausted battery. 

Throughout the case study scenarios considered in this thesis, the network topology changes many 

times; the scenarios included important context cases where the network decreased or increased in 

size, combined with an increase or decrease in mobility. To allow any routing protocol to function 

properly, a crucial assumption must also be stated here; that is, the rate of the topology change must 

not be greater than the rate of the state information propagation—otherwise the routing information 

will always be outdated and routing will be inefficient, or could even fail completely. A network that 

satisfies this condition is said to be combinatorially stable [8]. Therefore, in this case study, and 

specifically in the I-MAN simulation scenario (as this scenario sends Topology packets), this fact was 

taken into the account such that the context represented by network size and average mobility changes 

smoothly from one situation to another in a fixed period, for a duration of 16 minutes whereas the 

network Topology packets will be sent for the first time at 320 s and then for every TIA equal to 960 s. 

1. MANET nodes embedding the system’s protocols: The I-MAN routing protocols optimisation 

system demands that all network nodes, the ones joining in or the ones leaving or the ones moving 
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around, should embed at least the routing protocols that the system has modelled and may implement. 

If not, the network nodes will be separated when the Intelligent node sends an order to the nodes to 

operate on a routing protocol they do not have. 

In the I-MAN simulation scenario, I-MAN optimisation system requires that all MANET network 

nodes have the three protocols OLSR, DSR, and AODV embedded in them, and that the nodes also 

have the capability to operate the three routing protocols. 

2. Context-aware automatic computing system: The I-MAN routing protocols optimisation system 

is a context-aware automatic computing system; therefore, it should be provided with context-rich 

information to undertake the intelligent decision-making, which in turn will provide timely 

information to the user. 

In the I-MAN case study scenario, the intelligent optimisation system demands topology information 

about the network. The system will be operated when it receives the network nodes’ periodic 

Topology packets, and will then send the periodic Decision packets to the network nodes provided. 

3. The Intelligent node is known: Related to the previous point, the intelligent system needs to 

collect/send information from/to devices; hence, the device embedded the intelligent unit should be a 

node well-known to the entire network nodes. 

In this case study, the I-MAN simulation scenario assumes that the Intelligent node was known by all 

other network nodes, so the network nodes will address the destination ID for their Topology packets 

with the Intelligent node ID address. 

4. No failure for the Intelligent node:  The I-MAN simulation scenario assumed that the Intelligent 

node: 

A. Could move all around the network area, 

B. Should not leave the network, and 

C. Had sufficient battery life to finish the simulation without any failure. 

5. Limited prediction: In the I-MAN simulation scenario, the intelligent optimisation unit can predict 

the network performance for a range of network sizes, varying between 4 nodes and 64 nodes, and a 

range of average nodes’ mobility, varying between 0 (m/s) and 20 (m/s). As such, the intelligent 

optimisation unit cannot predict any results for networks larger or faster than the aforementioned 

parameters given. 

6. No hidden nodes: another assumption should be mentioned here, that there were no hidden nodes in 

this case study and that all network nodes were receiving all the packets that had been sent to them. 
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8.11 Summary 

In this chapter, important issues have been raised that should be determined before implementing and 

simulating the I-MAN optimisation system with the OpnetTM14 modeller software package. As in the 

chapter, it has been confirmed creating the Intelligent node for the system’s intelligent unit to decide 

the optimum routing protocol and also embed the intelligent optimisation unit in all the capable nodes. 

Also in this chapter, the OpnetTM14 modeller nodes were developed to formalize the I-MAN 

optimisation system, as the network nodes must be modified for applying the Intelligent node decision 

in the simulation environment. The Intelligent node was also created, it must pass through three phases 

(shown in Figure 8.4 of the flowchart): 

First, it acts as a sensor; the Nodes counter will be incremental whenever a Topology packet is 

received from the network nodes. 

Second, it acts as an actuator, as the Optimiser will be actuated at T1; and 

Third, it acts as a predictor, predicting the network performance employing several protocols, the 

optimum routing protocol for that context, and the network nodes switching time, T2. 

In the case study, the I-MAN optimisation system was tested with the three protocols OLSR, DSR, 

and AODV. The I-MAN protocol has adopted a different routing mechanism from time to time in an 

attempt to maintain the network performance at an acceptable level. The I-MAN Optimiser (as shown 

in Table 8.2) tends to choose AODV for fast networks and OLSR for dense networks with low and 

medium mobility; DSR was selected for relatively small networks with low mobility. The results show 

that OLSR has the best results in terms of delay and load, whereas AODV has the best throughput. 

Therefore, a cost minimisation index that aggregates performance results from multiple response 

metrics into a single scalar value which quantifies overall system performance can lead to more in-

depth cost minimisation evaluations and comparisons. In this chapter, the effectiveness of the 

proposed system has been confirmed by its clear cost-efficiency. As shown in the results, the I-MAN 

graph has the lowest cost in comparison to the other three traditional routing protocols. 

In this chapter, accumulated cost minimisation measurements (area under the curve) was defined and 

used as a measurement or comparison tool to evaluate the performance of the I-MAN optimisation 

system and the three protocols. 

This chapter also investigated the effects of deciding the period of the Inter-Arrival time, TIA. The 

better network results were gained from the smallest TIA period. In spite of these good results, the 

author believes that the best and optimum TIA is the one that follows the network needs; therefore, TIA 

should be variable with time, based on the network context. 
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 Chapter 9 

Conclusions and Future Work 
 

9.1 Summary 

Over the past few years, there has been a growing interest in a pervasive, connected world, where 

distances shrink and virtual presence is everywhere. Next generation wireless networks, 

heterogeneous access technologies, Ad hoc and sensor networks, and new Internet technologies have 

become a part of this new world. The need for innovative, increasingly robust, self-organising, and 

context-aware networking protocols and techniques will challenge our current designs. 

The previous sentences were taken from the call for the 8th International Conference on 

Telecommunications 2011 [1]. This call is one of many calls to find a routing protocol that will fulfil 

the network requirements, as investigations in this subject are ongoing and the present search has yet 

to achieve satisfactory results. 

Therefore, the point of this thesis is that, although there have been many MANET routing protocols 

invented, each protocol is designed based on a particular context condition. This is problematic 

because network conditions are not constant and, in a MANET dynamic environment, that particular 

context condition will not last long. This problem could be solved in two ways: either inventing 

another routing protocol that considers all the context-aware parameters (as in the ICT 2011 

conference call), or inventing a system that, given a change in the network context, selects the 

optimum routing protocol from a predefined list which contains all important and well-implemented 

routing protocols. 

The research in this thesis started by surveying the area of mobile networks in general, and MANET in 

particular, to understand the communications field. Another survey was then performed to understand 

the role of optimisation in a MANET routing protocol. Next, this thesis presents a novel design for an 

optimised system which learns from the network’s performance and predicts the optimal routing 

protocol for the network, called the I-MAN routing protocols optimisation system. This intelligent 

system will have the ability to adapt to variations in the network environment as the intelligent module 

selects the appropriate routing protocol according to the network’s context. 

Furthermore, the empirical RE technique and four other Artificial Intelligence techniques (ANN, NF, 

GA, and PSO) were defined and their functionalities explained in detail. Finally, the I-MAN routing 
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protocols optimisation system was implemented in MANET after some modifications to the network 

nodes. Previously, the performance models data drop, delay, load, RA, and throughput, were trained 

related to the network parameters network size and average mobility, against each tested routing 

protocol OLSR, DSR, and AODV. Whenever the nodes start sending their context parameters, the 

system will start collecting data that represents the network behaviour against this new context. Then, 

the intelligent optimisation system evaluated and compared the effect of this new context on the 

network performance for each tested routing protocol to select the most suitable protocol for the 

current network context. 

This system was evaluated and compared to traditional routing protocols (OLSR, DSR, and AODV). 

The calculation revealed that the minimum cost for I-MAN with accumulated measurements was 

equal to 37, whereas the AODV cost minimisation was 244 accumulated measurements, OLSR was 

264, and DSR was 339. These results prove the efficiency of the proposed system. 

 

9.2 Conclusions 

The overall aim of this thesis is to design and implement a novel intelligent optimisation system to 

solve the context-awareness problem in MANET routing. The survey results in MANET routing 

protocols area applied a different taxonomy to MANET routing protocols and listed various 

classifications. Each classification (taxonomy) was based on one of the network characteristics. 

Therefore, the network characteristics play an important role and are given priority in the design of a 

MANET routing protocol. This thesis also presents a new taxonomy added by the author, based on the 

routing metric. Also in this thesis, optimised MANET routing protocols were presented, with the 

protocols optimised either based on their routing metrics or based on deploying the optimisation 

techniques. The difference between this thesis proposal and other researches is that most of the other 

researches embedded their optimizing technique in the routing protocol, whereas this thesis proposes 

an optimizing system that is embedded in a network node. Thus, the literature review task has been 

fulfilled by presenting both an overview of the various taxonomies and previous optimisation work in 

the MANET routing protocol.  

Moreover, the thesis aimed to find the best modelling and optimizing techniques compatible with 

MANET. The research was based on three modelling techniques (RE, ANN, and NF), and two 

optimisation techniques (GA and PSO). These techniques were then evaluated to determine one 

representative and accurate modelling technique, that is NF, and one optimisation technique that will 

be adopted, that is PSO, by the final MANET optimisation system implementation. 

Finally, the proposed system was implemented in one of MANET node, the intelligent node, where the 

optimisation system was acting as a sensor to the network node and their mobility, then as an actuator 
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that trigger the optimiser at a certain time, then as an evaluator by exam each routing protocol 

performance at that current context, and finally as a predictor to decide the optimum protocol. The I-

MAN system proved to have the best cost minimisation compared to other MANET routing protocols. 

I-MAN has the best minimum cost with 4.4 %, whereas AODV came second with 27.5 %, OLSR 

came third with 29.8 %, and DSR was last with 38.3 %.  

In this thesis, the I-MAN routing protocols optimisation system has considered the network nodes 

performance as one unit, so the performance of the network’s individual nodes was not considered. 

Therefore, the output performance collected by the Simulator was for the entire network and not for 

each individual node in the network. The system observes network performance overall and depends 

on the performance cost for the decision. The optimisation unit (including the Modeller and the 

Optimiser) in the system could be used by each individual to optimise node characteristics such as data 

rate or power consumption. 

The main drawback of the proposed scheme is the energy consumption and overload due to the 

collecting and sending of information Topology/Decision packets by/from the Intelligent node. Also, 

the system complexity will increase along with the network size. If the network size is large, 

delivering Topology packets to the Intelligent node and sending Decision packets from the Intelligent 

node will consume more time and energy, as the route to the Intelligent node will be longer than that 

of a smaller network. The load will also be increased due to the number of information packets that 

have been sent. Moreover, the system is required to have at least one node with a computation 

capability to assume the responsibility of the Intelligent node. The system incurs a few hundred 

milliseconds of delay due to the collecting and sending of information packets. The network nodes 

also incur some milliseconds of delay to establish the new route with the optimum routing protocol. 

Finally, the I-MAN optimisation system requires a preparation stage before operation time. In the 

preparation stage, all performance parameters are modelled in NF, with the equivalent modeller 

programmed in C++ embedded in the Intelligent node. 

 

9.3 Achievements 

The main achievement of the work presented in this thesis is the creation of a self-optimised MANET 

with the support of an intelligent heuristic optimised system. The optimisation role was handled by the 

network cluster head node, represented in this thesis as the Intelligent node. The second achievement 

is the application of an AI technique to model MANET performance; this achievement opens another 

research area in comparing and developing the MANET evaluation mechanism. Finally, the work 

presented in this thesis created a re-tuned optimisation system. The system has considered two 

important parameters, network context and network performance, to determine the third parameter 
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routing protocol. These parameters are not constant; the system can add any new (recent) parameters 

or delete any unwanted (old or less important) parameters to/from the parameters list and the model 

will update accordingly, as described in Section 9.4.1.3. The system can also re-tune the priorities for 

each element in the fitness equation based on the user requirements. Section 9.4.1.5 regarding future 

work explains this characteristic in greater detail. Given the aforementioned advantages, the proposed 

system can be implemented to solve other problems in communication as well. 

 

9.4 Future Research 

The I-MAN routing protocols optimisation system achieved in this thesis has proved its efficiency 

through the case study results. However, more effort should be involved to develop and expand the 

system for use in other areas. The work in this thesis opens up research on various interesting issues 

and fields, as discussed below. 

 

9.4.1 Short Term Future Research 
For short term future research, the following issues need to be explored. A better system will be 

produced as a result of further investigation and study of the parameters that are listed in this section. 

 

9.4.1.1 Models Range 
Obviously, the more models the I-MAN routing protocols optimisation system has, the more accurate 

the system decision will be. The system infers the network performance based on a range of trained 

models. The selected ranges for the network size and the average mobility can be extended so that the 

MANET models can be upgraded to represent larger and faster networks. 

9.4.1.2 Update Models 
The network performance models in the I-MAN case study scenario were not updated. To develop the 

models to represent online network performance, the models should be updated. Models can be 

updated on a regular basis by first storing the network performance data during the network operation 

and then producing new, updated performance network models in the off-peak time. Updating the 

models frequently will result in representative models that have new information required by the 

intelligent optimisation unit. Any modification to the models should match the changes in the network 

performance. 
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9.4.1.3 Extend the Network’s Parameters 
In this thesis, the I-MAN routing protocols optimisation system is based on three important network 

elements: the context-aware parameters, the output performance parameters, and the routing protocols. 

The extension for each element is explained as follows: 

a. Context Parameter 

The optimisation system decision relies on two context parameters: network size and average mobility. 

More parameters could be considered for selecting the most suitable routing protocol for a specific 

situation; for example, various types of Entity mobility models. In this thesis, one type of Entity 

mobility model, the Random Walk Mobility Model, has been implemented. Other Entity mobility 

models could be implemented to evaluate the mobility models effect on the network, such as the 

Random Waypoint (with pause time) and Random Direction [2] models. 

b. The Performance Parameter 

Any new parameters that represent the network performance, such as battery life or power 

consumption, could be added and integrated in the cost equation for each protocol. 

c. The Routing Protocols 

More routing protocols could be included in the intelligent optimisation unit list. This list could also 

be used as a library that includes all the known routing protocols in MANET, for both the state-of-art 

routing protocols and the classical (traditional) routing protocols. 

9.4.1.4 Add More Elements 
This thesis relies on context-awareness to judge the network performance. In the future work, more 

elements could be added, such as: 

a. Application type (packet type): The packet type could also added as a second element, Thus the 

intelligent optimisation system will choose the optimum routing protocol depending on both the 

network context and application; and then run multi-simulation scenarios. Each with a particular 

application. Models could be created for these individual applications to represent the simulation data 

collected earlier. 

In addition, besides creating models for the individual applications, there could also be simulation 

scenarios and models for combining two or more applications running at the same time; such as 

models for video, voice conferencing, email, file transfer, and/or any new invented application type 

that proved its influence on the network performance in future. 

b. Routing activity is another important parameter that could also considered in situations, for 

instance, in which nodes are exchanging exceptionally more information between each other than 
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usual. Moreover, route requests may be a constant operation in the network and, consequently, could 

be improved by one of the routing protocols considered. 

c. Congestion might be added as an input parameter that show the network performance when 

the network size varied for a constant network area. 

d. Data rate could also be added as a parameter in the network performance. Models could be 

made from the simulation data that represent the network sending its packets at different data rates. 

Besides the parameters mentioned above, the search to discover further factors should continue. The 

aim is to create a list that contains all the parameters that affect the network behaviour. 

9.4.1.5 User Requirement 
In this thesis, the results were presented for the intelligent optimisation system decision following the 

network topology changes, assuming that there is no requirement for the user. User requirements will 

prioritize the performance parameters and give more weight to one parameter than the other. The 

Optimiser can respond to the user requirement and gives extra options to improve the network by 

prioritizing the performance. Therefore, the cost function in Equation (7.4) will be modified to become 

the Equation (9.1) below: 

Cost function  
5

)1()()()_( 22222 ThroughputthDelaydLoadldropDataddRAr 
  

           (9.1) 

Assuming r, dd, l, d, and th are the priority parameters for RA, data drop, load, delay, and throughput, 

respectively, where r, dd, l, d, and th ≤ 1. In this case study these parameters were assumed to be equal 

to one, thus allowing the network performance “equal opportunity.” However, if the priority 

parameter’s values differentiated, each performance parameter will be given its own priority level in 

the cost equation and thereby affect the PSO Optimiser’s decision. As such, more case studies should 

be carried out to show the intelligent optimisation system results of combining user requirements with 

network topology changes. 

9.4.1.6 List of Intelligent Nominees 
In the I-MAN case study scenario, the entire computation process load for the intelligent optimisation 

system is based in the Intelligent node. In the case of Intelligent node failure, the network nodes will 

nevertheless continue to send Topology packets containing their current context without any reply 

from the Intelligent node. This situation leaves the network operated as a normal network (before 

activating the I-MAN routing protocols optimisation system), with an extra overload from the periodic 

Topology packets. 

Therefore, the suggested solution will be to undertake another case study that implements a simulation 

scenario in which the Intelligent node, and all the nodes embedded in the intelligent optimisation 
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system, have a list of nominees containing all nodes capable of substituting for the Intelligent node if it 

fails. These nodes could also be called the standby or backup nodes. In this scenario, there should be 

an extension in the node’s Topology packets. This extended field should be called the ability field. It 

will take a one-bit space in the packet. This one bit will be like a flag with two options, 1 or 0. If the 

network node is still able to supervise the network, the flag will be on (ability field equal to 1); 

whereas if the network node does not has the capability to supervise the network for a particular 

reason, such as the node dose not have sufficient battery, then the ability flag will be off (ability field 

equal to 0). Thus, after the network nodes send their modified periodic Topology packets to the 

Intelligent node, the node based on those Topology packets will compare its stored list of nominees 

and update it with the nodes that are still capable of supervising. The Intelligent node will order the 

nominee node based on a “first come, first serve” strategy. The first nominee node on the list will be 

the first the Intelligent node receives its Topology packets from, with the ability flag 1. With the same 

strategy, the Intelligent node will fill the rest of the list. As a result, a new list of nominee nodes will 

be created in the Intelligent node, then it will be attached to the Decision packets for the nominees ID 

addresses in MANET. This means that all the network nodes will have an updated list of the 

Intelligent node’s nominees. If, however, the Intelligent node fails suddenly, then the network nodes 

will have to wait for a Threshold time. For example, this Threshold time could be equal to three times 

the Topology packets’ periodic time. After the Threshold time, the network nodes will send their 

periodic packets to the first nominated node in the network nodes’ nominee list. Also, if the Intelligent 

node is planning to leave the network, then it will order its last Decision packets to be sent to the first 

nominated node in the network nodes nominee list. More scenarios representing the solution 

mentioned in this section could be considered to evaluate this case. 

9.4.1.7 Partitioning the Network or Dropping the Protocol 
More simulation scenarios could be considered in which not all nodes have the three protocols 

embedded in them; that’s means, not all nodes have the capability of running the same routing 

protocol. There are two possible decisions that could be made in this case, either: a) the protocol that is 

not common to all nodes is not to be considered; or b) the network is divided into two routing areas. A 

comparison should be made to find out which solution is more efficient and beneficial to network 

performance. 

9.4.1.8 Hidden Nodes 
More simulation scenarios should be ran with the assumption of a network with hidden nodes; for 

example, one simulation with the assumption that some of the nodes are not receiving the Decision 

packets sent by the Intelligent node, and another with the assumption that the Intelligent node is not 

receiving all network Topology packets. 
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9.4.1.9 AI Technique 
In this thesis, many AI techniques have been implemented, including ANN, NF, GA, and PSO. Other 

AI optimisation techniques, such as the Ant colony and the Honey Bee, could be implemented, 

evaluated, and compared with GA and PSO. 

Whereas the intelligent optimisation system herein embedded NF and PSO, other intelligent systems 

could also be created using any of the previous AI techniques, such as ANN and GA. These new 

systems can then be compared against the I-MAN routing protocols optimisation system. 

 

9.4.2 Long-Term Future Research 
In long-term future research, the following issues need to be explored. 

 

9.4.2.1 Add Routing Protocol Classification List to I-MAN System 
In this research, the I-MAN protocol switches between routing protocols with different routing 

philosophies. For example, in the I-MAN case study, the network nodes switch from a reactive 

protocol (DSR or AODV) to a proactive protocol (OLSR), and visa versa. If the node was using one 

type of routing protocol, for example, proactive, and switches to another type, for example, reactive, it 

will loose its routing table. To employ the new optimum routing protocol, then, the nodes should 

establish a new routing table. This operation will involve sending many control messages to gather and 

collect the information data about its neighbours and sort them in their routing table. This is a loss for 

the network nodes’ computing time and energy, as their battery life has been wasted and the network 

was over a continuance load. Additionally, this process will start all over again whenever another 

switch occurs. As such, a solution has been suggested in this section to modify the original I-MAN 

routing protocols optimisation system and overcome this problem.  That is adding a classification list 

to the I-MAN system. This list contains various classifications for the routing protocols (similar to the 

taxonomies mentioned in Chapter 2), as the Optimiser will depend on them to reach its decision. 

The modification here involves switching between the protocols that have similar characteristics. The 

routing protocols listed in the Intelligent node (Optimizer) should have the classification for the 

routing protocol, according to the characteristics. The PSO Optimizer will select the routing protocol 

that has similar characteristics to the previous operated protocol. This solution also gives strength to 

the system as it will narrow the area searched by the Optimizer’s to select the optimum protocol. 

In this case, another selection criteria is added, which is to select the optimum protocol with the same 

network characteristic. For example, the Optimizer prepared classified the routing protocols according 

to the network characteristics below: 
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(a) Routing philosophy: reactive, proactive, or hybrid routing protocols. 

(b) Network structure: flat, hierarchical, or Geographical Position Information routing protocol. 

(c) Casting packets technique: unicast, or multicast routing protocol. 

(d) Network routing metric: hop number or link stability. 

For instance, if a reactive routing protocol in operation degraded because of the context change, the 

intelligent Optimiser will have to replace it with another reactive routing protocol from its 

classification list. The protocols from the same routing philosophy will share the same routing table, 

such that if a switching occurs the node will not loose it routing table, but instead be used by the new 

routing protocol. This solution will improve the situation of the network nodes as they will hold and 

reuse their routing tables when deploying the I-MAN intelligent optimisation system in their network. 

9.4.2.2 Context-aware routing protocol  
Creating a context-aware routing protocol is the other way of solving the problem, as mentioned in the 

summary. This solution does not require a routing protocol classification list. The intelligent 

optimisation system will not have to distinguish between the protocols and classify them according to 

their characteristics. This solution is more complicated than the first one as it depends on modifying 

the network node routing table to be used by all of the routing protocol types. This means that the node 

routing table is flexible and can be adopted by any type of routing protocol. For example, if a reactive 

routing protocol is operating and the node switches to a different protocol in the routing philosophy, 

such as proactive or hybrid, then the old node’s routing table could still be used. In this way, there will 

be fewer overloads and less network energy expended because all neighbouring node information will 

be saved. 

9.4.2.3 Wireless Mesh Network 
The network scenario would be more realistic and the energy problem will be solved if the intelligent 

optimisation system is part of a mesh network. Obviously, the protocols the system includes will be 

WMN protocols [3], with the system embedded in one of the backbone mesh routers connected to the 

MANET. If the mesh router is a station node (for example, desktop computer), then it has sufficient 

power and computation capability to supervise the network; therefore, it will reduce the probability of 

encountering the single-point-of-failure problem. 

9.4.2.4 Cognitive Network 
The cognitive network includes a cognitive process that implements adaptation and learning 

techniques [4]. The network implemented in the proposed system is an active network that can be 

developed for a cognitive network by improving the learning technique (modelling part) in the system, 
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as the adaptation component is already equipped for integration. Developing the learning technique 

will be achieved by updating the network performance models online. 

9.4.2.5 Intelligent Transportation Systems 
Vehicular communications are a cornerstone of future Intelligent Transportation Systems. By enabling 

vehicles to communicate with each other via Inter-Vehicle Communication, as well as with roadside 

base stations via Roadside-to-Vehicle Communication, vehicular networks will contribute to safer and 

more efficient roads. The network also will provide timely information to drivers and concerned 

authorities [5]. 

Therefore, Vehicular Ad hoc Networks (VANETs) [6] that allow vehicles to form a self-organised 

network without the need for permanent infrastructure are an interesting area in which to apply the 

proposed system. The result will be an Intelligent Transportation System, keeping in mind that 

VANET routing protocols are developed from popular unicast and multicast MANET routing 

protocols. 

9.4.2.6 Internet of Things System 
The Internet of Things (IoT) is a new concept that is rapidly gaining considerable attention in modern 

wireless telecommunications [7]. The idea behind the IoT is based on interactions between varieties of 

objects, or “things,” around us. These things have their own unique ID address and are able to 

cooperate with their neighbours to reach common goals. IoT is created from three oriented visions: 

Things-Internet –Semantic, where the word Internet represents any wireless telecommunications. 

The proposed intelligent system acts as an actuator, therefore, it could represent the “Things-”oriented 

vision of IoT. The system also implemented in MANET, thus it represents the “Internet-”oriented 

vision of IoT. Therefore, to develop the proposed system to represent the Internet of Things, it should 

integrate the “Semantic-”oriented vision such as the semantic technologies. 

9.4.2.7 Real Test Bed 
This thesis implemented the intelligent optimisation system by simulation. To put this system in a real 

test bed, the system will require efforts in modification and development to match the realistic 

situation. 

9.4.2.8 Expanding the System 
The system was designed to combine performance parameters into one equation that will determine 

the optimal routing protocol for a given situation and then trigger that protocol in the network; this 

solution could be applied to other computing problems as well. The possibility of expanding this 

optimisation system to other layers in networking systems, and also to other fields of computer science 

and informatics, should be studied. 
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