3,039 research outputs found

    When things matter: A survey on data-centric Internet of Things

    Get PDF
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, but several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy and continuous. This paper reviews the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    On distributed mobile edge computing

    Get PDF
    Mobile Cloud Computing (MCC) has been proposed to offload the workloads of mobile applications from mobile devices to the cloud in order to not only reduce energy consumption of mobile devices but also accelerate the execution of mobile applications. Owing to the long End-to-End (E2E) delay between mobile devices and the cloud, offloading the workloads of many interactive mobile applications to the cloud may not be suitable. That is, these mobile applications require a huge amount of computing resources to process their workloads as well as a low E2E delay between mobile devices and computing resources, which cannot be satisfied by the current MCC technology. In order to reduce the E2E delay, a novel cloudlet network architecture is proposed to bring the computing and storage resources from the remote cloud to the mobile edge. In the cloudlet network, each mobile user is associated with a specific Avatar (i.e., a dedicated Virtual Machine (VM) providing computing and storage resources to its mobile user) in the nearby cloudlet via its associated Base Station (BS). Thus, mobile users can offload their workloads to their Avatars with low E2E delay (i.e., one wireless hop). However, mobile users may roam among BSs in the mobile network, and so the E2E delay between mobile users and their Avatars may become worse if the Avatars remain in their original cloudlets. Thus, Avatar handoff is proposed to migrate an Avatar from one cloudlet into another to reduce the E2E delay between the Avatar and its mobile user. The LatEncy aware Avatar handDoff (LEAD) algorithm is designed to determine the location of each mobile user\u27s Avatar in each time slot in order to minimize the average E2E delay among all the mobile users and their Avatars. The performance of LEAD is demonstrated via extensive simulations. The cloudlet network architecture not only facilitates mobile users in offloading their computational tasks but also empowers Internet of Things (IoT). Popular IoT resources are proposed to be cached in nearby brokers, which are considered as application layer middleware nodes hosted by cloudlets in the cloudlet network, to reduce the energy consumption of servers. In addition, an Energy Aware and latency guaranteed dynamic reSourcE caching (EASE) strategy is proposed to enable each broker to cache suitable popular resources such that the energy consumption from the servers is minimized and the average delay of delivering the contents of the resources to the corresponding clients is guaranteed. The performance of EASE is demonstrated via extensive simulations. The future work comprises two parts. First, caching popular IoT resources in nearby brokers may incur unbalanced traffic loads among brokers, thus increasing the average delay of delivering the contents of the resources. Thus, how to balance the traffic loads among brokers to speed up IoT content delivery process requires further investigation. Second, drone assisted mobile access network architecture will be briefly investigated to accelerate communications between mobile users and their Avatars

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    ElfStore: A Resilient Data Storage Service for Federated Edge and Fog Resources

    Full text link
    Edge and fog computing have grown popular as IoT deployments become wide-spread. While application composition and scheduling on such resources are being explored, there exists a gap in a distributed data storage service on the edge and fog layer, instead depending solely on the cloud for data persistence. Such a service should reliably store and manage data on fog and edge devices, even in the presence of failures, and offer transparent discovery and access to data for use by edge computing applications. Here, we present Elfstore, a first-of-its-kind edge-local federated store for streams of data blocks. It uses reliable fog devices as a super-peer overlay to monitor the edge resources, offers federated metadata indexing using Bloom filters, locates data within 2-hops, and maintains approximate global statistics about the reliability and storage capacity of edges. Edges host the actual data blocks, and we use a unique differential replication scheme to select edges on which to replicate blocks, to guarantee a minimum reliability and to balance storage utilization. Our experiments on two IoT virtual deployments with 20 and 272 devices show that ElfStore has low overheads, is bound only by the network bandwidth, has scalable performance, and offers tunable resilience.Comment: 24 pages, 14 figures, To appear in IEEE International Conference on Web Services (ICWS), Milan, Italy, 201

    User Activity Detection in Massive Random Access: Compressed Sensing vs. Coded Slotted ALOHA

    Full text link
    Machine-type communication services in mobile cel- lular systems are currently evolving with an aim to efficiently address a massive-scale user access to the system. One of the key problems in this respect is to efficiently identify active users in order to allocate them resources for the subsequent transmissions. In this paper, we examine two recently suggested approaches for user activity detection: compressed-sensing (CS) and coded slotted ALOHA (CSA), and provide their comparison in terms of performance vs resource utilization. Our preliminary results show that CS-based approach is able to provide the target user activity detection performance with less overall system resource utilization. However, this comes at a price of lower energy- efficiency per user, as compared to CSA-based approach.Comment: Accepted for presentation at IEEE SPAWC 201
    • …
    corecore