888 research outputs found

    Energy efficiency in short and wide-area IoT technologies—A survey

    Get PDF
    In the last years, the Internet of Things (IoT) has emerged as a key application context in the design and evolution of technologies in the transition toward a 5G ecosystem. More and more IoT technologies have entered the market and represent important enablers in the deployment of networks of interconnected devices. As network and spatial device densities grow, energy efficiency and consumption are becoming an important aspect in analyzing the performance and suitability of different technologies. In this framework, this survey presents an extensive review of IoT technologies, including both Low-Power Short-Area Networks (LPSANs) and Low-Power Wide-Area Networks (LPWANs), from the perspective of energy efficiency and power consumption. Existing consumption models and energy efficiency mechanisms are categorized, analyzed and discussed, in order to highlight the main trends proposed in literature and standards toward achieving energy-efficient IoT networks. Current limitations and open challenges are also discussed, aiming at highlighting new possible research directions

    Security and Privacy in Mobile Computing: Challenges and Solutions

    Get PDF
    abstract: Mobile devices are penetrating everyday life. According to a recent Cisco report [10], the number of mobile connected devices such as smartphones, tablets, laptops, eReaders, and Machine-to-Machine (M2M) modules will hit 11.6 billion by 2021, exceeding the world's projected population at that time (7.8 billion). The rapid development of mobile devices has brought a number of emerging security and privacy issues in mobile computing. This dissertation aims to address a number of challenging security and privacy issues in mobile computing. This dissertation makes fivefold contributions. The first and second parts study the security and privacy issues in Device-to-Device communications. Specifically, the first part develops a novel scheme to enable a new way of trust relationship called spatiotemporal matching in a privacy-preserving and efficient fashion. To enhance the secure communication among mobile users, the second part proposes a game-theoretical framework to stimulate the cooperative shared secret key generation among mobile users. The third and fourth parts investigate the security and privacy issues in mobile crowdsourcing. In particular, the third part presents a secure and privacy-preserving mobile crowdsourcing system which strikes a good balance among object security, user privacy, and system efficiency. The fourth part demonstrates a differentially private distributed stream monitoring system via mobile crowdsourcing. Finally, the fifth part proposes VISIBLE, a novel video-assisted keystroke inference framework that allows an attacker to infer a tablet user's typed inputs on the touchscreen by recording and analyzing the video of the tablet backside during the user's input process. Besides, some potential countermeasures to this attack are also discussed. This dissertation sheds the light on the state-of-the-art security and privacy issues in mobile computing.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Comparison of low-power wireless communication technologies for wearable health-monitoring applications

    Get PDF
    Health monitoring technologies such as Body Area Network (BAN) systems has gathered a lot of attention during the past few years. Largely encouraged by the rapid increase in the cost of healthcare services and driven by the latest technological advances in Micro-Electro-Mechanical Systems (MEMS) and wireless communications. BAN technology comprises of a network of body worn or implanted sensors that continuously capture and measure the vital parameters such as heart rate, blood pressure, glucose levels and movement. The collected data must be transferred to a local base station in order to be further processed. Thus, wireless connectivity plays a vital role in such systems. However, wireless connectivity comes at a cost of increased power usage, mainly due to the high energy consumption during data transmission. Unfortunately, battery-operated devices are unable to operate for ultra-long duration of time and are expected to be recharged or replaced once they run out of energy. This is not a simple task especially in the case of implanted devices such as pacemakers. Therefore, prolonging the network lifetime in BAN systems is one of the greatest challenges. In order to achieve this goal, BAN systems take advantage of low-power in-body and on-body/off-body wireless communication technologies. This paper compares some of the existing and emerging low-power communication protocols that can potentially be employed to support the rapid development and deployment of BAN systems

    Completely pinpointing the missing RFID tags in a time-efficient way

    Get PDF
    PublishedJournal Article© 1968-2012 IEEE. Radio Frequency Identification (RFID) technology has been widely used in inventory management in many scenarios, e.g., warehouses, retail stores, hospitals, etc. This paper investigates a challenging problem of complete identification of missing tags in large-scale RFID systems. Although this problem has attracted extensive attention from academy and industry, the existing work can hardly satisfy the stringent real-time requirements. In this paper, a Slot Filter-based Missing Tag Identification (SFMTI) protocol is proposed to reconcile some expected collision slots into singleton slots and filter out the expected empty slots as well as the unreconcilable collision slots, thereby achieving the improved time-efficiency. The theoretical analysis is conducted to minimize the execution time of the proposed SFMTI. We then propose a cost-effective method to extend SFMTI to the multi-reader scenarios. The extensive simulation experiments and performance results demonstrate that the proposed SFMTI protocol outperforms the most promising Iterative ID-free Protocol (IIP) by reducing nearly 45% of the required execution time, and is just within a factor of 1.18 from the lower bound of the minimum execution time.This work was supported by NSFC (Grant Nos. 60973117, 61173160, 61173162, 60903154, and 61321491), New Century Excellent Talents in University (NCET) of Ministry of Education of China, the National Science Foundation for Distinguished Young Scholars of China (Grant No. 61225010), the Doctoral Fund of Ministry of Education of China (Grant No. 20130041110019), and the Project funded by China Postdoctoral Science Foundation

    A multiple hashing approach to complete identification of missing RFID tags

    Get PDF
    PublishedJournal ArticleOwing to its superior properties, such as fast identification and relatively long interrogating range over barcode systems, Radio Frequency Identification (RFID) technology has promising application prospects in inventory management. This paper studies the problem of complete identification of missing RFID tag, which is important in practice. Time efficiency is the key performance metric of missing tag identification. However, the existing protocols are ineffective in terms of execution time and can hardly satisfy the requirements of real-time applications. In this paper, a Multi-hashing based Missing Tag Identification (MMTI) protocol is proposed, which achieves better time efficiency by improving the utilization of the time frame used for identification. Specifically, the reader recursively sends bitmaps that reflect the current slot occupation state to guide the slot selection of the next hashing process, thereby changing more empty or collision slots to the expected singleton slots. We investigate the optimal parameter settings to maximize the performance of the MMTI protocol. Furthermore, we discuss the case of channel error and propose the countermeasures to make the MMTI workable in the scenarios with imperfect communication channels. Extensive simulation experiments are conducted to evaluate the performance of MMTI, and the results demonstrate that this new protocol significantly outperforms other related protocols reported in the current literature. © 2014 IEEE.This work was supported by NSFC (Grant No.s 60973117, 61173160, 61173162, 60903154, and 61321491), New Century Excellent Talents in University (NCET) of Ministry of Education of China, the National Science Foundation for Distinguished Young Scholars of China (Grant No. 61225010), and the Project funded by China Postdoctoral Science Foundation
    • …
    corecore