236 research outputs found

    Secure Routing in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to the service providers. Unlike traditional Wi-Fi networks, with each access point (AP) connected to the wired network, in WMNs only a subset of the APs are required to be connected to the wired network. The APs that are connected to the wired network are called the Internet gateways (IGWs), while the APs that do not have wired connections are called the mesh routers (MRs). The MRs are connected to the IGWs using multi-hop communication. The IGWs provide access to conventional clients and interconnect ad hoc, sensor, cellular, and other networks to the Internet. However, most of the existing routing protocols for WMNs are extensions of protocols originally designed for mobile ad hoc networks (MANETs) and thus they perform sub-optimally. Moreover, most routing protocols for WMNs are designed without security issues in mind, where the nodes are all assumed to be honest. In practical deployment scenarios, this assumption does not hold. This chapter provides a comprehensive overview of security issues in WMNs and then particularly focuses on secure routing in these networks. First, it identifies security vulnerabilities in the medium access control (MAC) and the network layers. Various possibilities of compromising data confidentiality, data integrity, replay attacks and offline cryptanalysis are also discussed. Then various types of attacks in the MAC and the network layers are discussed. After enumerating the various types of attacks on the MAC and the network layer, the chapter briefly discusses on some of the preventive mechanisms for these attacks.Comment: 44 pages, 17 figures, 5 table

    Security in Computer and Information Sciences

    Get PDF
    This open access book constitutes the thoroughly refereed proceedings of the Second International Symposium on Computer and Information Sciences, EuroCybersec 2021, held in Nice, France, in October 2021. The 9 papers presented together with 1 invited paper were carefully reviewed and selected from 21 submissions. The papers focus on topics of security of distributed interconnected systems, software systems, Internet of Things, health informatics systems, energy systems, digital cities, digital economy, mobile networks, and the underlying physical and network infrastructures. This is an open access book

    Applied Formal Methods in Wireless Sensor Networks

    Get PDF
    This work covers the application of formal methods to the world of wireless sensor networks. Mainly two different perspectives are analyzed through mathematical models which can be distinct for example into qualitative statements like "Is the system error free?" From the perspective of quantitative propositions we investigate protocol optimal parameter settings for an energy efficient operation

    Virtual network function development for NG-PON Access Network Architecture

    Get PDF
    Dissertação de mestrado em Engenharia de Redes e Serviços TelemáticosThe access to Internet services on a large scale, high throughput and low latency has grown at a very high pace over time, with a growing demand for media content and applications increasingly oriented towards data consumption. This fact about the use of data at the edge of the network requires the Central Offices (CO) of telecommunication providers, to be pre pared to absorb these demands. COs generally offer data from various access methods, such as Passive Optical Network (PON) technologies, mobile networks, copper wired and oth ers. For each of these technologies there may be different manufacturers that support only their respective hardware and software solutions, although they all share different network resources and have management, configuration and monitoring tools (Fault, Configuration, Accounting, Performance, and Security management - FCAPS) similar, but being distinct and isolated from each other, which produces huge investment in Capital Expenditure (CAPEX) and Operational Expenditure (OPEX) and can cause barriers to innovation. Such panora mas forced the development of more flexible, scalable solutions that share platforms and net work architectures that can meet this need and enable the evolution of networks. It is then proposed the architecture of Software-Defined Network (SDN) which has in its proposal to abstract the control plane from the data plane, in addition to the virtualization of several Net work Function Virtualization (NFV). The SDN architecture allows APIs and protocols such as Openflow, NETCONF / YANG, RESTCONF, gRPC and others to be used so that there is communication between the various hardware and software elements that compose the net work and consume network resources, such as services AAA, DHCP, routing, orchestration, management or various applications that may exist in this context. This work then aims at the development of a virtualized network function, namely a VNF in the context of network security to be integrated as a component of an architecture guided by the SDN paradigm applied to broadband networks, and also adherent to the architecture OB-BAA promoted by the Broadband Forum. Such OB-BAA architecture fits into the initia tive to modernize the Information Technology (IT) components of broadband networks, more specifically the Central Offices. With such development, it was intended to explore the con cepts of network security, such as the IEEE 802.1X protocol applied in NG-PON networks for authentication and authorization of new network equipment. To achieve this goal, the development of the applications was based on the Golang language combined with gRPC programmable interfaces for communication between the various elements of the architec ture. Network emulators were initially used, and then the components were ”containerized” and inserted in the Docker and Kubernetes virtualization frameworks. Finally, performance metrics were analyzed in the usage tests, namely computational resource usage metrics (CPU, memory and network I/O), in addition to the execution time of several processes performed by the developed applications.O acesso aos serviços de Internet em larga escala, alto débito e baixa latência têm crescido em um ritmo bastante elevado ao longo dos tempos, com uma demanda crescente por conteúdos de media e aplicações cada vez mais orientadas ao consumo de dados. Tal fato acerca da uti lização de dados na periferia da rede, obriga a que os Central Offices (CO) dos provedores de telecomunicações estejam preparados para absorver estas demandas. Os CO geralmente re cebem dados de diversos métodos de acesso, como tecnologias Passive Optical Network (PON), redes móveis, cabladas em cobre, entre outros. Para cada uma destas tecnologias pode haver diferentes fabricantes que suportam somente suas respetivas soluções de hardware e software, apesar de todas compartilharem diversos recursos de rede e possuírem ferramentas de gestão, configuração e monitoração (Fault-management, Configuration, Accounting, Performance e Segurança - FCAPS) similares, mas serem distintas e isoladas entre si, o que se traduz em um enorme investimento em Capital Expenditure (CAPEX) e Operational Expenditure (OPEX) e pode causar barreiras à inovação. Tais panoramas forçaram o desenvolvimento de soluções mais flexíveis, escaláveis e que compartilhem plataformas e arquiteturas de redes que pos sam suprir tal necessidade e possibilitar a evolução das redes. Propõe-se então a arquitetura de redes definidas por software (Software-Defined Network - SDN) que tem em sua proposta abstrair o plano de controle do plano de dados, além da virtualização de diversas funções de rede (Network Function Virtualization - NFV). A arquitetura SDN possibilita que API’s e pro tocolos como Openflow, NETCONF/YANG, RESTCONF, gRPC e outros, sejam utilizados para que haja comunicação entre os diversos elementos de hardware e software que estejam a compor a rede e a consumir recursos de redes, como serviços de AAA, DHCP, roteamento, orquestração, gestão ou diversas outras aplicações que possam existir neste contexto. Este trabalho visa então o desenvolvimento de uma função de rede virtualizada nomeada mente uma (Virtual Network Function - VNF) no âmbito de segurança de redes a ser integrada como um componente de uma arquitetura orientada pelo paradigma de SDN aplicado a re des de banda larga, e aderente também à arquitetura OB-BAA promovida pelo Broadband Fo rum. Tal arquitetura OB-BAA se enquadra na iniciativa de modernização dos componentes de Tecnologia da Informação (TI) das redes de banda larga, mais especificamente dos Cen tral Offices. Com tal desenvolvimento pretende-se explorar conceitos de segurança de redes, como o protocolo IEEE 802.1X aplicado em redes NG-PON para autenticação e autorização de novos equipamentos de rede. Para atingir tal objetivo, utilizou-se desenvolvimento de aplicações baseadas na linguagem Golang aliado com interfaces programáveis gRPC para comunicação entre os diversos elementos da arquitetura. Para emular tais componentes, utilizou-se inicialmente emuladores de rede, e em um segundo momento os componentes foram ”containerizados” e inseridos nos frameworks de virtualização Docker e Kubernetes.Por fim, foram analisadas métricas de desempenho nos testes executados, nomeadamente métricas de utilização de recursos computacionais (CPU, memória e tráfego de rede), além do tempo de execução de diversos processos desempenhados pelas aplicações desenvolvidas

    Trustworthiness in Mobile Cyber Physical Systems

    Get PDF
    Computing and communication capabilities are increasingly embedded in diverse objects and structures in the physical environment. They will link the ‘cyberworld’ of computing and communications with the physical world. These applications are called cyber physical systems (CPS). Obviously, the increased involvement of real-world entities leads to a greater demand for trustworthy systems. Hence, we use "system trustworthiness" here, which can guarantee continuous service in the presence of internal errors or external attacks. Mobile CPS (MCPS) is a prominent subcategory of CPS in which the physical component has no permanent location. Mobile Internet devices already provide ubiquitous platforms for building novel MCPS applications. The objective of this Special Issue is to contribute to research in modern/future trustworthy MCPS, including design, modeling, simulation, dependability, and so on. It is imperative to address the issues which are critical to their mobility, report significant advances in the underlying science, and discuss the challenges of development and implementation in various applications of MCPS

    Enhanced Quality of Experience Based on Enriched Network Centric and Access Control Mechanisms

    Get PDF
    In the digital world service provisioning in user satisfying quality has become the goal of any content or network provider. Besides having satisfied and therefore, loyal users, the creation of sustainable revenue streams is the most important issue for network operators [1], [2], [3]. The motivation of this work is to enhance the quality of experience of users when they connect to the Internet, request application services as well as to maintain full service when these users are on the move in WLAN based access networks. In this context, the aspect of additional revenue creation for network operators is considered as well. The enhancements presented in this work are based on enriched network centric and access control mechanisms which will be achieved in three different areas of networks capabilities, namely the network performance, the network access and the network features themselves. In the area of network performance a novel authentication and authorisation method is introduced which overcomes the drawback of long authentication time in the handover procedure as required by the generic IEEE 802.1X process using the EAP-TLS method. The novel sequential authentication solution reduces the communication interruption time in a WLAN handover process of currently several hundred milliseconds to some milliseconds by combining the WPA2 PSK and the WPA2 EAP-TLS. In the area of usability a new user-friendly hotspot registration and login mechanisms is presented which significantly simplifies how users obtain WLAN hotspot login credentials and logon to a hotspot. This novel barcode initiated hotspot auto-login solution obtains user credentials through a simple SMS and performs an auto-login process that avoids the need to enter user name and password on the login page manually. In the area of network features a new system is proposed which overcomes the drawback that users are not aware of the quality in which a service can be provided prior to starting the service. This novel graceful denial of service solution informs the user about the expected application service quality before the application service is started

    Poisoning Network Visibility in Software-Defined Networks: New Attacks and Countermeasures

    Full text link
    Abstract—Software-Defined Networking (SDN) is a new net-working paradigm that grants a controller and its applications an omnipotent power to have holistic network visibility and flexible network programmability, thus enabling new innovations in network protocols and applications. One of the core advantages of SDN is its logically centralized control plane to provide the entire network visibility, on which many SDN applications rely. For the first time in the literature, we propose new attack vectors unique to SDN that seriously challenge this foundation. Our new attacks are somewhat similar in spirit to spoofing attacks in legacy networks (e.g., ARP poisoning attack), however with significant differences in exploiting unique vulnerabilities how current S-DN operates differently from legacy networks. The successful attacks can effectively poison the network topology information, a fundamental building block for core SDN components and topology-aware SDN applications. With the poisoned network visibility, the upper-layer OpenFlow controller services/apps may be totally misled, leading to serious hijacking, denial of service or man-in-the-middle attacks. According to our study, all current major SDN controllers we find in the market (e.g., Floodlight, OpenDaylight, Beacon, and POX) are affected, i.e., they are subject to the Network Topology Poisoning Attacks. We then investigate the mitigation methods against the Network Topology Poisoning Attacks and present TopoGuard, a new security exten-sion to SDN controllers, which provides automatic and real-time detection of Network Topology Poisoning Attacks. Our evaluation on a prototype implementation of TopoGuard in the Floodlight controller shows that the defense solution can effectively secure network topology while introducing only a minor impact on normal operations of OpenFlow controllers. I

    Telecommunications Networks

    Get PDF
    This book guides readers through the basics of rapidly emerging networks to more advanced concepts and future expectations of Telecommunications Networks. It identifies and examines the most pressing research issues in Telecommunications and it contains chapters written by leading researchers, academics and industry professionals. Telecommunications Networks - Current Status and Future Trends covers surveys of recent publications that investigate key areas of interest such as: IMS, eTOM, 3G/4G, optimization problems, modeling, simulation, quality of service, etc. This book, that is suitable for both PhD and master students, is organized into six sections: New Generation Networks, Quality of Services, Sensor Networks, Telecommunications, Traffic Engineering and Routing

    A security architecture for IPv6 enabled wireless medical sensor networks.

    Get PDF
    We present the design of an IPv6 enabled wireless sensor network based on the IEEE 802.15.4 standard for medical monitoring. We design a routing mechanism for efficient flooding, a hop-by-hop error recovery and congestion control mechanism for reliable packet delivery and a lightweight security architecture for the medical monitoring system. We extend the widely used Extensible Authentication Protocol (EAP) to employ the Generalized Pre-shared Key (GPSK) authentication method with some optimizations for securing the system. We use the 3-party EAP model with the Personal Area Network Coordinator (PAN coordinator) of IEEE 802.15.4 standard as the EAP authenticator for authenticating sensor nodes within the radio range of the PAN coordinator. In order to use EAP authentication for a sensor node several hops away from the PAN coordinator, we define a new role (relay authenticator) for its coordinator which tunnels EAP messages to the PAN coordinator securely. We define EAP message encapsulation for IEEE 802.15.4 networks and a key hierarchy for the security architecture. We have simulated the system and shown that EAP based authentication is feasible in wireless sensor networks.The original print copy of this thesis may be available here: http://wizard.unbc.ca/record=b136235
    corecore