2,694 research outputs found

    Energy-efficient active tag searching in large scale RFID systems

    Get PDF
    Radio Frequency Identification (RFID) has attracted much research attention in recent years. RFID can support automatic information tracing and management during the management process in many fields. A typical field that uses RFID is modern warehouse management, where products are attached with tags and the inventory of products is managed by retrieving tag IDs. Many practical applications require searching a group of tags to determine whether they are in the system or not. The existing studies on tag searching mainly focused on improving the time efficiency but paid little attention to energy efficiency which is extremely important for active tags powered by built-in batteries. To fill in this gap, this paper investigates the tag searching problem from the energy efficiency perspective. We first propose an Energy-efficient tag Searching protocol in Multiple reader RFID systems, namely ESiM, which pushes per tag energy consumption to the limit as each tag needs to exchange only one bit data with the reader. We then develop a time efficiency enhanced version of ESiM, namely TESiM, which can dramatically reduce the execution time while only slightly increasing the transmission overhead. Extensive simulation experiments reveal that, compared to state-of-the-art solution in the current literature, TESiM reduces per tag energy consumption by more than one order of magnitude subject to comparable execution time. In most considered scenarios, TESiM even reduces the execution time by more than 50%.This work is partially supported by the National Science Foundation of China (Grant Nos. 61103203, 61332004, 61402056 and 61420106009), NSFC/RGC Joint Research Scheme (Grant No. N_PolyU519/12), and the EU FP7 CLIMBER project (Grant Agreement No. PIRSES-GA-2012-318939)

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    Benefits of connecting rfid and lean principles in health care

    Get PDF
    The performance management process in health care is far behind compared to the manufacturing and service industries. Although nowadays the health care organizations are able to deal with a greater rank diseases, their cost, quality and delivery has essentially not improved significantly, and the difference with the other industries even seems to have increased. As opposed to this situation health care has a tremendous opportunity to deploy lean principles to reduce internal/external costs, improve patient safety, increase profits, reduce litigation and decrease the dependence on Government and Insurance. The application of these principles is being facilitated by the use of the new technologies. A new technology allowing personnel to constantly "see" what's happening with regards to patients schedule, backlog, workflow, inventory levels, resource utilization, quality, etc., is Radio Frequency Identification (RFID). The aim of this paper is to analyse the benefits that can be derived from the joint use of lean principles and RFID technology in health care

    BENEFITS OF CONNECTING RFID AND LEAN PRINCIPLES IN HEALTH CARE

    Get PDF
    The performance management process in health care is far behind compared to the manufacturing and service industries. Although nowadays the health care organizations are able to deal with a greater rank diseases, their cost, quality and delivery has essentially not improved significantly, and the difference with the other industries even seems to have increased. As opposed to this situation health care has a tremendous opportunity to deploy lean principles to reduce internal/external costs, improve patient safety, increase profits, reduce litigation and decrease the dependence on Government and Insurance. The application of these principles is being facilitated by the use of the new technologies. A new technology allowing personnel to constantly "see" what’s happening with regards to patients schedule, backlog, workflow, inventory levels, resource utilization, quality, etc., is Radio Frequency Identification (RFID). The aim of this paper is to analyse the benefits that can be derived from the joint use of lean principles and RFID technology in health care.

    CRUC: Cold-start Recommendations Using Collaborative Filtering in Internet of Things

    Get PDF
    The Internet of Things (IoT) aims at interconnecting everyday objects (including both things and users) and then using this connection information to provide customized user services. However, IoT does not work in its initial stages without adequate acquisition of user preferences. This is caused by cold-start problem that is a situation where only few users are interconnected. To this end, we propose CRUC scheme - Cold-start Recommendations Using Collaborative Filtering in IoT, involving formulation, filtering and prediction steps. Extensive experiments over real cases and simulation have been performed to evaluate the performance of CRUC scheme. Experimental results show that CRUC efficiently solves the cold-start problem in IoT.Comment: Elsevier ESEP 2011: 9-10 December 2011, Singapore, Elsevier Energy Procedia, http://www.elsevier.com/locate/procedia/, 201

    Enhancing pharmaceutical packaging through a technology ecosystem to facilitate the reuse of medicines and reduce medicinal waste

    Get PDF
    The idea of reusing dispensed medicines is appealing to the general public provided its benefits are illustrated, its risks minimized, and the logistics resolved. For example, medicine reuse could help reduce medicinal waste, protect the environment and improve public health. However, the associated technologies and legislation facilitating medicine reuse are generally not available. The availability of suitable technologies could arguably help shape stakeholders’ beliefs and in turn, uptake of a future medicine reuse scheme by tackling the risks and facilitating the practicalities. A literature survey is undertaken to lay down the groundwork for implementing technologies on and around pharmaceutical packaging in order to meet stakeholders’ previously expressed misgivings about medicine reuse (’stakeholder requirements’), and propose a novel ecosystem for, in effect, reusing returned medicines. Methods: A structured literature search examining the application of existing technologies on pharmaceutical packaging to enable medicine reuse was conducted and presented as a narrative review. Results: Reviewed technologies are classified according to different stakeholders’ requirements, and a novel ecosystem from a technology perspective is suggested as a solution to reusing medicines. Conclusion: Active sensing technologies applying to pharmaceutical packaging using printed electronics enlist medicines to be part of the Internet of Things network. Validating the quality and safety of returned medicines through this network seems to be the most effective way for reusing medicines and the correct application of technologies may be the key enabler
    • 

    corecore