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Abstract 

The Internet of Things (IoT) aims at interconnecting everyday objects (including both things and users) and then 
using this connection information to provide customized user services. However, IoT does not work in its initial 
stages without adequate acquisition of user preferences. This is caused by cold-start problem that is a situation where 
only few users are interconnected. To this end, we propose CRUC scheme --- Cold-start Recommendations Using 
Collaborative Filtering in IoT, involving formulation, filtering and prediction steps. Extensive experiments over real 
cases and simulation have been performed to evaluate the performance of CRUC scheme. Experimental results show 
that CRUC efficiently solves the cold-start problem in IoT. 
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1. Introduction 

The Internet of Things (IoT) refers to a self-configuring network in which everyday objects are 
interconnected to the Internet [1] [2]. IoT deploys sensors in infrastructures (e.g., rooms and buildings) to 
get a heightened awareness of real-time events.  It also employs sensors capturing contextual information 
about objects (e.g., user preferences) to achieve an enhanced situational awareness [3] [21-26]. Readings 
from a large number of sensors for various objects are enormous, but only a few of them are useful for a 
specific user. Thus, IoT customizes services to users according to their preferences or behaviors that are 
acquired by sensors.  

However, IoT is seriously limited by a cold-start problem that IoT cannot draw any inferences for 
users about which it has not yet collected sufficient information. The cold-start problem usually occurs at 
the beginning of constructing IoT systems or new objects or users are tracked and reflected in the IoT 
network. The cold-start problem is fundamental in IoT, which results in inaccurate recommendations and 
long latency in response to recommendation requests. Suppose that IoT employs Radio Frequency 
IDentification (RFID) [20] to keep track of user locations and then provides a tourism navigation service.  
Sometimes, IoT is supposed to support longer-range, more complex tourism planning and decision 
making. For example, IoT makes a travel plan for the May Day Holiday. But without previous 
information of user location and behaviors, IoT fails to be deep situation awareness. 

In general, the cold-start problem is characterized by two features --- scalability and sparsity. The 
former feature is caused by the number of tracked objects and their interaction data. IoT uses sensors to 
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track a huge number of objects, as well as their interaction. Thus, IoT gathers an extra-large data of 
objects' interaction. This incurs that IoT falls short of quickly responding to requesters. The latter feature 
arises from the information density. Although IoT gets a large amount of sensor readings about objects, it 
acquires little information about a specific object, particularly in a cold-start situation. Correspondingly, it 
is a non-trivial job to predict user preference on the basis of cold-start IoT systems. 

To this end, we conduct the first research on investigating the cold-start problem in IoT. In this paper, 
we propose a way to acquire such user information by Collaborative Filtering (CF), which is referred to 
as CRUC --- Cold-start Recommendations Using Collaborative Filtering in Internet of Things. CRUC 
consists of formulation, filtering and prediction steps. In the beginning, CRUC formulates the cold-start 
problem in IoT as a surmise of user preferences. Then, it picks the most important users and their 
information by introducing significant users. Finally, CRUC comes up with a fusion policy to predict user 
preferences. 

The rest of this paper is organized as follows. Section II gives a preliminary introduction to our work.  
Section III discusses the proposed scheme CRUC in detail. Section IV reports the experimental results 
and Section V concludes our work. 

2. Preliminary 

     In this section, we firstly overview the Collaborative Filtering (CF). Then, we introduce our notations 
to facilitate understanding of our work. 

2.1. Collaborative Filtering 

Collaborative Filtering (CF) is an enabling technique that allows recommender systems to 
recommending products or services that they are likely to be of interest to users.  CF has been widely 
adopted as a salient part in Amazon [4], Google [5], Netflix [6] and Yahoo [7]. 

Broadly, CF consists of two primary categories — memory-based and model-based schemes.  
Memory-based schemes identify like-minded users or similar items over the entire item-user matrix. As a 
result, they often achieve high levels of accuracy as well as poor scalability [8] [9]. Memory-based 
schemes can be further classified into item-based and user-based schemes. In contrast, model-based 
schemes narrow down  the  searching scope of like-minded users or similar items by exploiting models 
mainly from machine learning and artificial intelligence [10] [11]. 

2.2.  Notations 

     In order to keep readability of the following parts in this paper, we firstly introduce the related 
notations. Table 1 illustrates the notations in the design of the proposed scheme. 

Table 1. Notations in the design of the proposed scheme 
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Notations Description 

I The set of items 

U The set of users 

|I| The number of items in the item-user matrix 

|U| The number of users in the item-user matrix 

Iu The set of items rated by the user u 

Ui the set of users who have rated the item i 

ru,i the rating that the user u rates the item i 

ir  the average rating of the item i 

ur  the average rating of the user u 

Pu,i the predicted rating on the item i by the user u 

Si the set of the item i’s similar items 

Su the set of the user u’s like-minded users 

 

2.3. Item-based and User-based CF Schemes 

     Item-based CF regards that a user may prefer similar items. Given an active u and an active item i, Eq. 
1 shows the manner that item-based CF work, where sim(i, j) is  the similarity measurement between 
items i and j. 
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      In contrast, user-based CF assumes that like-minded user may like the same item. Given two active 
users u and v, Eq. 2 displays the way that user-based CF work, where sim(u,v) is the similarity between 
active users. 
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      Note that the similarity measurement for items and users is usually computed using Pearson 
Coefficient Correlation (PCC) or Vector Space Similarity (VSS) algorithms [8] [9] [12] [13]. 
 

 

Figure 1: The CRUC scheme 

In this paper, we use PCC to compute similarity of items and users, which is defined as the covariance 
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of the two variables (e.g., X, Y) divided by the product of their standard deviations. PCC is shown in 

Equation 3, where ux and uy are mean values of variables X and Y, and x  and y   are standard 

deviation of variables X and Y. 
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3. CRUC: Cold-start Recommendations Using Collaborative Filtering in Internet of Things 

IoT involves a large number of sensors, as well as their readings for objects. In the initial phase, IoT 
deploys sensors into infrastructure for the purpose of tracking objects. Although the number of sensor 
readings is enormous, there are only a few readings for a specific user is few. In this case, IoT cannot 
provide any personalized services to users. This is the cold-start situation. Note that we use objects and 
users alternatively in the contexts without ambiguity. 

To this end, we propose in this section the CRUC scheme — Cold-start Recommendations Using 
Collaborative Filtering in Internet of Things. In the following section, we overview it before discussing it 
in detail. 

3.1. Overview of CRUC Scheme 

Figure 1 illustrates the CRUC scheme, consisting of offline and online phases. In the offline phase, 
CRUC involves two steps — reformulation and filtering. In the online phase, CRUC contains one step — 
prediction. We intentionally design CRUC to two phases, and move the compute-intensive operations in 
the offline phase. This approach considerably reduces the computation overhead in the online phase and 
accelerates the response. 

In the reformulation step, we handle the cold-start problem in IoT from a new perspective. We  
suppose that users  are tracked  by  sensors,  and  items  are  sensor  readings  that  are acquired in the 
process of sensing users. Given an active user u, its location is regarded as items. User u may stay in 
many places and thus generates different location corresponding to every place. For every place, we 
denote that the probability that user u stays in a location as a rating (e.g., the rating for living bedrooms of 
user u may be the highest score). By recording all users and their location information, we get a rating 
matrix as well as their ratings for a specific location. We go further by normalizing the ratings. Thus, we 
construct a standardized item-user matrix. This matrix is characterized by sparsity owing to the few 
ratings, and scalability owing to the large-scale of the item-user matrix. 

We  get  findings  from  experiments  that  not  all  ratings positively  contribute  to  the  prediction  of  
user  preferences. Low-level ratings reflects the user dislike toward certain items, which negatively affect 
the recommendation performance. In fact, only the most significant users and their ratings can be used for 
recommendation. We introduce significant users to identify users who have a significant influence on the 
recommendation. Then, we cluster these users into different clusters. Consider that the rating density of 
the matrix composed of the significant users is still sparse. We introduce a smoothing policy to minimize 
the sparsity influence. 

In the last step, we predict user preferences. We propose a fusion policy to fuse three sources of ratings 
in the recommendation — the ratings given to similar items from the same user, to the same item from 
like-minded users, and given to similar items from like-minded users. Let M be the number of similar 
items, K be the number of like-minded users, SIR be the ratings by item-based prediction, SUR be the 
ratings by user-based prediction, SUIR be the ratings by hybrid prediction of item-based and user-based 
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prediction with fusion parameters λ and δ, and SR be the ratings by CRUC scheme.  

3.2. Identifying Significant Users 

Let u = |Iu|/|I|, Definition 1 defines the significant users. By specifying the threshold u , CRUC 

selects the most important users.  

Definition 1.  Frequent raters are users whose rating density u  is bigger than the threshold u , i.e., 

u > u , where  is the average rating density of all users. 

3.3. Clustering significant users 

We cluster significant users due to two reasons. One is to remove the diversity in user ratings; the other 
is to alleviate the influence of rating sparsity. 

We use K-means method to cluster significant users. Thus, we classify users into user clusters.  The K-
means method trains the data iteratively and assigns every user to a cluster whose centroid is the closest 
to him or her [8] [9] [12]. 

3.4. Smoothing user ratings 

Sensor readings are noisy and can easily be error-prone [14] [15]. Thus, the ratings based on sensor 
readings are not justified. Therefore, we come up a smooth policy. 

The missing values in every user cluster are smoothed by the rating deviation of the user cluster, given 
as Eq. 4, where UCu is the user cluster that includes the user u  
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3.5. Fusing predictions 

When IoT predicts user preferences, it has three kinds of ratings — the ratings from the same user 
made on the similar items, like-minded users made on the same item and like-minded users made on the 
similar items. Given that these ratings affect the recommendation diversely, we share a fusion policy 
proposed in our previous work [12].  CRUC chooses SUR as the main prediction source, and SIR and 
SUIR as supplementary sources. Let λ and δ be the fusion parameters whose values are between 0 and 1, 
Equation 5 defines the fusion policy. 

SUIRSURSIRrSR
ab iu   )1()1()1(: ,                                                 (5) 

4. Experiments 

We conduct a series of experiments including both simulation and real implementation to evaluate the 
proposed scheme. We report the experimental results in our simulation. We select the MAE (Mean 
Absolute Error) and RMSE (Root Mean Squared Error) that can be regarded canonical measurement in 
CF (e.g., in [8] [9] [16] [17] [18]) . 
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Figure 2:MAE over the MovieLens data set (A small value means a better performance) 

We use MovieLens data (http://www.grouplens.org/) set to simulate the ratings in the cold-start IoT 
system. This data set is generated by an online recommender system since 1992. We ran the program on a 
cluster of Ubuntu 64-bit OS that involves 4 computers. Every computer is with 8 GB RAM and Intel 
Xeon E5405 2.00 GHz dual CPUs. Table 2: Statistics of MovieLens dataset  

Features MovieLens Features MovieLens 

Number of users 71567 Global avg. rating 3.5124 

Number of items 10681 Avg. #of rated items per user 139.7 

Number of ratings 10000054 Avg. #of rated users per item 936.2 

Data density 1.31%   

4.1. Estimated accuracy 

We select the 15%, 30%, 45%, 60% and 70% of the data set as the training sets, and select the 
remaining part 15% of the data set as the test set. We use cross validation to evaluate the proposed 
schemes. We select the SCB [8] and SVD [19] as benchmark schemes. We set the fusion parameters λ 
and δ (refer to [12] for detail) as 0.75 and 0.1, correspondingly. 

Figure 2 and Figure 3 illustrate the estimated accuracy over the MovieLens data set. With the increase 
of the size of the training set (i.e., from 15% to 75%), the MAEs of all schemes show a downward trend. 
When the size percentage of the training set is between 40% to 70%, the MAEs of all schemes keep at a 
lower value, indicating that these schemes achieve the better estimated accuracy. This is because that they 
exploit more and more useful ratings in the item-user matrix. When the size percentage of the training set 
is bigger than 70%, the MAEs of all schemes do not change considerably. This indicates that 40% up to 
70% percentage of the data set can represent the entire data set in prediction. 

On the other side, we find that CRUC scheme gets the lowest MAE among all schemes, implying that 
CRUC outperforms SVD and SCB schemes. This is mainly because three reasons. One is that CRUC 
identifies the significant users. Moreover, CRUC removes the user rating diversity by a smooth policy 
within every user cluster. The last reason is that CRUC efficiently makes use of diverse rating sources by 
applying a fusion policy. 
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Figure 3:RMSE over the MovieLens data set (A small value means a better performance) 

Note that CRUC method involves several parameters, including the threshold for identifying 
significant users, the fusion parameter for fusing recommendation from item-based and user-based 
schemes. Owing to the limit of the page space, we omit this part. 

5. Conclusions 

In this paper, we have studied the cold-start problem in the Internet of Thing (IoT). We have proposed 
CRUC scheme -— Cold-start Recommendations Using Collaborative Filtering in IoT, containing offline 
and online phases, i.e., the reformulation, filtering and prediction steps. Experimental results show that 
CRUC can efficiently solve the cold-start problem. 

However, CRUC could be improved in several aspects. Firstly, we need to finish it in the real 
implementation on the basis of RFID-tracked systems. Then, we will take advantage of more aspects of 
the data, e.g., dates associated with the ratings and attributes of items and users, which may reflect the 
changes of user preferences. 
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